BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35620669)

  • 1. Parallelization of Neural Processing on Neuromorphic Hardware.
    Peres L; Rhodes O
    Front Neurosci; 2022; 16():867027. PubMed ID: 35620669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum.
    Bogdan PA; Marcinnò B; Casellato C; Casali S; Rowley AGD; Hopkins M; Leporati F; D'Angelo E; Rhodes O
    Front Cell Neurosci; 2021; 15():622870. PubMed ID: 34135732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time cortical simulation on neuromorphic hardware.
    Rhodes O; Peres L; Rowley AGD; Gait A; Plana LA; Brenninkmeijer C; Furber SB
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190160. PubMed ID: 31865885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker.
    Rhodes O; Bogdan PA; Brenninkmeijer C; Davidson S; Fellows D; Gait A; Lester DR; Mikaitis M; Plana LA; Rowley AGD; Stokes AB; Furber SB
    Front Neurosci; 2018; 12():816. PubMed ID: 30524220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.
    Knight JC; Furber SB
    Front Neurosci; 2016; 10():420. PubMed ID: 27683540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware.
    Rostami A; Vogginger B; Yan Y; Mayr CG
    Front Neurosci; 2022; 16():1018006. PubMed ID: 36518534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond LIF Neurons on Neuromorphic Hardware.
    Ward M; Rhodes O
    Front Neurosci; 2022; 16():881598. PubMed ID: 35864984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System.
    Mikaitis M; Pineda García G; Knight JC; Furber SB
    Front Neurosci; 2018; 12():105. PubMed ID: 29535600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.
    Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R
    Front Neurosci; 2021; 15():667011. PubMed ID: 34267622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.
    Stromatias E; Neil D; Pfeiffer M; Galluppi F; Furber SB; Liu SC
    Front Neurosci; 2015; 9():222. PubMed ID: 26217169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SHIP: a computational framework for simulating and validating novel technologies in hardware spiking neural networks.
    Gemo E; Spiga S; Brivio S
    Front Neurosci; 2023; 17():1270090. PubMed ID: 38264497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking the millisecond barrier on SpiNNaker: implementing asynchronous event-based plastic models with microsecond resolution.
    Lagorce X; Stromatias E; Galluppi F; Plana LA; Liu SC; Furber SB; Benosman RB
    Front Neurosci; 2015; 9():206. PubMed ID: 26106288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.