BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35620871)

  • 1. Hereditary hemorrhagic telangiectasia: First demonstration of a founder effect in Italy; the ACVRL1 c.289_294del variant originated in the country of Bergamo 200 years ago.
    Sbalchiero A; Abu Hweij Y; Mazza T; Buscarini E; Scotti C; Pagella F; Manfredi G; Matti E; Spinozzi G; Olivieri C
    Mol Genet Genomic Med; 2022 Aug; 10(8):e1972. PubMed ID: 35620871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation analysis in Norwegian families with hereditary hemorrhagic telangiectasia: founder mutations in ACVRL1.
    Heimdal K; Dalhus B; Rødningen OK; Kroken M; Eiklid K; Dheyauldeen S; Røysland T; Andersen R; Kulseth MA
    Clin Genet; 2016 Feb; 89(2):182-6. PubMed ID: 25970827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Genetic diagnostics of hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu disease)].
    Major T; Gindele R; Szabó Z; Jóni N; Kis Z; Bora L; Bárdossy P; Rácz T; Karosi T; Bereczky Z
    Orv Hetil; 2019 May; 160(18):710-719. PubMed ID: 31030535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational and clinical spectrum of Japanese patients with hereditary hemorrhagic telangiectasia.
    Kitayama K; Ishiguro T; Komiyama M; Morisaki T; Morisaki H; Minase G; Hamanaka K; Miyatake S; Matsumoto N; Kato M; Takahashi T; Yorifuji T
    BMC Med Genomics; 2021 Dec; 14(1):288. PubMed ID: 34872578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and molecular characterization of patients with hereditary hemorrhagic telangiectasia: Experience from an HHT Center of Excellence.
    Latif MA; Sobreira NLD; Guthrie KS; Motaghi M; Robinson GM; Shafaat O; Gong AJ; Weiss CR
    Am J Med Genet A; 2021 Jul; 185(7):1981-1990. PubMed ID: 33768677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curaçao diagnostic criteria for hereditary hemorrhagic telangiectasia is highly predictive of a pathogenic variant in ENG or ACVRL1 (HHT1 and HHT2).
    McDonald J; Bayrak-Toydemir P; DeMille D; Wooderchak-Donahue W; Whitehead K
    Genet Med; 2020 Jul; 22(7):1201-1205. PubMed ID: 32300199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a Novel ACVRL1 Gene Mutation (c.100T>A, p.Cys34Ser) in a Japanese Patient with Possible Hereditary Hemorrhagic Telangiectasia (Osler-Weber-Rendu Disease).
    Umemura H; Miura K; Naruse H; Hatta Y; Takei M; Nakayama T
    Acta Med Okayama; 2020 Apr; 74(2):165-169. PubMed ID: 32341592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence variations of ACVRL1 play a critical role in hepatic vascular malformations in hereditary hemorrhagic telangiectasia.
    Giraud S; Bardel C; Dupuis-Girod S; Carette MF; Gilbert-Dussardier B; Riviere S; Saurin JC; Eyries M; Patri S; Decullier E; Calender A; Lesca G
    Orphanet J Rare Dis; 2020 Sep; 15(1):254. PubMed ID: 32962750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the ENG, ACVRL1, and SMAD4 genes and clinical manifestations of hereditary haemorrhagic telangiectasia: experience from the Center for Osler's Disease, Uppsala University Hospital.
    Karlsson T; Cherif H
    Ups J Med Sci; 2018 Sep; 123(3):153-157. PubMed ID: 30251589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variant analysis in Chinese families with hereditary hemorrhagic telangiectasia.
    Zhao Y; Zhang Y; Wang X; Zhang L
    Mol Genet Genomic Med; 2019 Sep; 7(9):e893. PubMed ID: 31400083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations.
    Balachandar S; Graves TJ; Shimonty A; Kerr K; Kilner J; Xiao S; Slade R; Sroya M; Alikian M; Curetean E; Thomas E; McConnell VPM; McKee S; Boardman-Pretty F; Devereau A; Fowler TA; Caulfield MJ; Alton EW; Ferguson T; Redhead J; McKnight AJ; Thomas GA; ; Aldred MA; Shovlin CL
    Am J Med Genet A; 2022 Mar; 188(3):959-964. PubMed ID: 34904380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ACVRL1 c.314-35A>G polymorphism is associated with organ vascular malformations in hereditary hemorrhagic telangiectasia patients with ENG mutations, but not in patients with ACVRL1 mutations.
    Pawlikowska L; Nelson J; Guo DE; McCulloch CE; Lawton MT; Young WL; Kim H; Faughnan ME;
    Am J Med Genet A; 2015 Jun; 167(6):1262-7. PubMed ID: 25847705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation affecting the proximal promoter of Endoglin as the origin of hereditary hemorrhagic telangiectasia type 1.
    Albiñana V; Zafra MP; Colau J; Zarrabeitia R; Recio-Poveda L; Olavarrieta L; Pérez-Pérez J; Botella LM
    BMC Med Genet; 2017 Feb; 18(1):20. PubMed ID: 28231770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of a novel ENG variant in a patient with hereditary hemorrhagic telangiectasia (HHT) identifies a new Sp1 binding-site.
    Plumitallo S; Ruiz-Llorente L; Langa C; Morini J; Babini G; Cappelletti D; Scelsi L; Greco A; Danesino C; Bernabeu C; Olivieri C
    Gene; 2018 Mar; 647():85-92. PubMed ID: 29305977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hereditary hemorrhagic telangiectasia: evidence for regional founder effects of ACVRL1 mutations in French and Italian patients.
    Lesca G; Genin E; Blachier C; Olivieri C; Coulet F; Brunet G; Dupuis-Girod S; Buscarini E; Soubrier F; Calender A; Danesino C; Giraud S; Plauchu H;
    Eur J Hum Genet; 2008 Jun; 16(6):742-9. PubMed ID: 18285823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel mutations in ENG and ACVRL1 identified in a series of 200 individuals undergoing clinical genetic testing for hereditary hemorrhagic telangiectasia (HHT): correlation of genotype with phenotype.
    Bossler AD; Richards J; George C; Godmilow L; Ganguly A
    Hum Mutat; 2006 Jul; 27(7):667-75. PubMed ID: 16752392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatic Mutations in Vascular Malformations of Hereditary Hemorrhagic Telangiectasia Result in Bi-allelic Loss of ENG or ACVRL1.
    Snellings DA; Gallione CJ; Clark DS; Vozoris NT; Faughnan ME; Marchuk DA
    Am J Hum Genet; 2019 Nov; 105(5):894-906. PubMed ID: 31630786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome sequencing identify chromosome 9 inversions disrupting ENG in 2 unrelated HHT families.
    Tusseau M; Eyries M; Chatron N; Coulet F; Guichet A; Colin E; Demeer B; Maillard H; Thevenon J; Lavigne C; Saillour V; Paris C; De Sainte Agathe JM; Pujalte M; Guilhem A; Dupuis-Girod S; Lesca G
    Eur J Med Genet; 2024 Apr; 68():104919. PubMed ID: 38355093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New genetic drivers in hemorrhagic hereditary telangiectasia.
    Cerdà P; Castillo SD; Aguilera C; Iriarte A; Rocamora JL; Larrinaga AM; Viñals F; Graupera M; Riera-Mestre A
    Eur J Intern Med; 2024 Jan; 119():99-108. PubMed ID: 37689549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of ENG and ACVRL1 (ALK1) mutations in French HHT patients.
    Lesca G; Burnichon N; Raux G; Tosi M; Pinson S; Marion MJ; Babin E; Gilbert-Dussardier B; Rivière S; Goizet C; Faivre L; Plauchu H; Frébourg T; Calender A; Giraud S;
    Hum Mutat; 2006 Jun; 27(6):598. PubMed ID: 16705692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.