BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35621143)

  • 61. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.
    Xing CM; Meng FN; Quan M; Ding K; Dang Y; Gong YK
    Acta Biomater; 2017 Sep; 59():129-138. PubMed ID: 28663144
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance.
    Huang CJ; Chu SH; Wang LC; Li CH; Lee TR
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23776-86. PubMed ID: 26452141
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics.
    Sfragano PS; Moro G; Polo F; Palchetti I
    Biosensors (Basel); 2021 Jul; 11(8):. PubMed ID: 34436048
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Low-Fouling Surface Plasmon Resonance Sensor for Highly Sensitive Detection of MicroRNA in a Complex Matrix Based on the DNA Tetrahedron.
    Nie W; Wang Q; Zou L; Zheng Y; Liu X; Yang X; Wang K
    Anal Chem; 2018 Nov; 90(21):12584-12591. PubMed ID: 30346693
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications.
    Liu Y; Leng C; Chisholm B; Stafslien S; Majumdar P; Chen Z
    Langmuir; 2013 Mar; 29(9):2897-905. PubMed ID: 23394402
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors.
    Liu X; Huang R; Su R; Qi W; Wang L; He Z
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13034-42. PubMed ID: 25026640
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Kill-Resist-Renew Trinity: Hyperbranched Polymer with Self-Regenerating Attack and Defense for Antifouling Coatings.
    Dai G; Ai X; Mei L; Ma C; Zhang G
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13735-13743. PubMed ID: 33710850
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Functional Biointerfaces Based on Mixed Zwitterionic Self-Assembled Monolayers for Biosensing Applications.
    Wang YS; Yau S; Chau LK; Mohamed A; Huang CJ
    Langmuir; 2019 Feb; 35(5):1652-1661. PubMed ID: 30107740
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Low Fouling, Peptoid-Coated Polysulfone Hollow Fiber Membranes-the Effect of Grafting Density and Number of Side Chains.
    Mahmoudi N; Roberts J; Harrison G; Alshammari N; Hestekin J; Servoss SL
    Appl Biochem Biotechnol; 2020 Jun; 191(2):824-837. PubMed ID: 31872336
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Surface sensing and stress-signalling in Ulva and fouling diatoms - potential targets for antifouling: a review.
    Thompson SEM; Coates JC
    Biofouling; 2017 May; 33(5):410-432. PubMed ID: 28508711
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Principles of biofouling protection in marine sponges: a model for the design of novel biomimetic and bio-inspired coatings in the marine environment?
    Müller WE; Wang X; Proksch P; Perry CC; Osinga R; Gardères J; Schröder HC
    Mar Biotechnol (NY); 2013 Aug; 15(4):375-98. PubMed ID: 23525893
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biorecognition Layer Based On Biotin-Containing [1]Benzothieno[3,2-
    Poimanova EY; Shaposhnik PA; Anisimov DS; Zavyalova EG; Trul AA; Skorotetcky MS; Borshchev OV; Vinnitskiy DZ; Polinskaya MS; Krylov VB; Nifantiev NE; Agina EV; Ponomarenko SA
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16462-16476. PubMed ID: 35357127
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Antifouling Aptasensor Based on Self-Assembled Loop-Closed Peptides with Enhanced Stability for CA125 Assay in Complex Biofluids.
    Chen M; Han R; Wang W; Li Y; Luo X
    Anal Chem; 2021 Oct; 93(40):13555-13563. PubMed ID: 34570974
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography.
    Chen L; Duan Y; Cui M; Huang R; Su R; Qi W; He Z
    Sci Total Environ; 2021 Apr; 766():144469. PubMed ID: 33422842
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles.
    Li X; Li J; Fang X; Bakzhan K; Wang L; Van der Bruggen B
    J Colloid Interface Sci; 2016 May; 469():164-176. PubMed ID: 26874982
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Versatile antifouling coatings based on self-assembled oligopeptides for engineering and biological materials.
    Li N; Yue X; Zhang L; Wang K; Zhang J; Zhang Z; Dang F
    J Mater Chem B; 2019 Apr; 7(14):2242-2246. PubMed ID: 32254672
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications.
    Zhang H; Chiao M
    J Med Biol Eng; 2015; 35(2):143-155. PubMed ID: 25960703
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings.
    Lejars M; Margaillan A; Bressy C
    Chem Rev; 2012 Aug; 112(8):4347-90. PubMed ID: 22578131
    [No Abstract]   [Full Text] [Related]  

  • 79. Highly Specific Binding on Antifouling Zwitterionic Polymer-Coated Microbeads as Measured by Flow Cytometry.
    van Andel E; de Bus I; Tijhaar EJ; Smulders MMJ; Savelkoul HFJ; Zuilhof H
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38211-38221. PubMed ID: 29064669
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma--material selection and protein immobilization optimization.
    Vaisocherová H; Zhang Z; Yang W; Cao Z; Cheng G; Taylor AD; Piliarik M; Homola J; Jiang S
    Biosens Bioelectron; 2009 Mar; 24(7):1924-30. PubMed ID: 19036575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.