These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35621205)

  • 1. Effects of fluid slippage on pressure-driven electrokinetic energy conversion in conical nanochannels.
    Qian F; Guo P; Zhang W; Wang Q; Zhao C
    Electrophoresis; 2022 Nov; 43(21-22):2062-2073. PubMed ID: 35621205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic power generation in conical nanochannels: regulation effects due to conicity.
    Qian F; Zhang W; Huang D; Li W; Wang Q; Zhao C
    Phys Chem Chem Phys; 2020 Jan; 22(4):2386-2398. PubMed ID: 31938800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores.
    Chang CC
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid theoretical method for predicting electrokinetic energy conversion in nanochannels.
    Hu X; Nan Y; Kong X; Lu D; Wu J
    Phys Chem Chem Phys; 2020 Apr; 22(16):9110-9116. PubMed ID: 32301460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube.
    Buren M; Jian Y; Zhao Y; Chang L; Liu Q
    Beilstein J Nanotechnol; 2019; 10():1628-1635. PubMed ID: 31467824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip-enhanced electrokinetic energy conversion in nanofluidic channels.
    Ren Y; Stein D
    Nanotechnology; 2008 May; 19(19):195707. PubMed ID: 21825725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Energy Generation and Flow Enhancement (
    Sachar HS; Pial TH; Sivasankar VS; Das S
    ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification.
    Khatibi M; Ashrafizadeh SN; Sadeghi A
    Anal Chim Acta; 2020 Jul; 1122():48-60. PubMed ID: 32503743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular theory for predicting the thermodynamic efficiency of electrokinetic energy conversion in slit nanochannels.
    Hu X; Kong X; Lu D; Wu J
    J Chem Phys; 2018 Feb; 148(8):084701. PubMed ID: 29495756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-driven energy conversion of conical nanochannels: Anomalous dependence of power generated and efficiency on pH.
    Lin TW; Hsu JP
    J Colloid Interface Sci; 2020 Mar; 564():491-498. PubMed ID: 32000071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaporation-driven electrokinetic energy conversion: Critical review, parametric analysis and perspectives.
    Yaroshchuk A
    Adv Colloid Interface Sci; 2022 Jul; 305():102708. PubMed ID: 35640318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streaming-potential-mediated pressure-driven transport of Phan-Thien-Tanner fluids in a microchannel.
    Sarkar S
    Phys Rev E; 2020 May; 101(5-1):053104. PubMed ID: 32575225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsteady Pressure-Driven Electrokinetic Slip Flow and Heat Transfer of Power-Law Fluid through a Microannulus.
    Deng S; Bian R; Liang J
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.
    Jian Y; Li F; Liu Y; Chang L; Liu Q; Yang L
    Colloids Surf B Biointerfaces; 2017 Aug; 156():405-413. PubMed ID: 28551575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximizing Electrokinetic Energy Conversion via the Intersecting Asymptotes Method.
    Mansouri A; Kostiuk L
    Sci Rep; 2019 Jan; 9(1):750. PubMed ID: 30679707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Streaming potential of superhydrophobic microchannels.
    Park HM; Kim D; Kim SY
    Electrophoresis; 2017 Mar; 38(5):689-701. PubMed ID: 27935097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat Transport of Electrokinetic Flow in Slit Soft Nanochannels.
    Wang Z; Jian Y
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.