These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35621264)

  • 1. Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity.
    Saxena S; Russo AA; Cunningham J; Churchland MM
    Elife; 2022 May; 11():. PubMed ID: 35621264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural network that finds a naturalistic solution for the production of muscle activity.
    Sussillo D; Churchland MM; Kaufman MT; Shenoy KV
    Nat Neurosci; 2015 Jul; 18(7):1025-33. PubMed ID: 26075643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor primitives in space and time via targeted gain modulation in cortical networks.
    Stroud JP; Porter MA; Hennequin G; Vogels TP
    Nat Neurosci; 2018 Dec; 21(12):1774-1783. PubMed ID: 30482949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent neural networks controlling musculoskeletal models predict motor cortex activity during novel limb movements.
    Almani MN; Saxena S
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3350-3356. PubMed ID: 36086532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From the motor cortex to the movement and back again.
    Teka WW; Hamade KC; Barnett WH; Kim T; Markin SN; Rybak IA; Molkov YI
    PLoS One; 2017; 12(6):e0179288. PubMed ID: 28632736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between external inputs and recurrent dynamics during movement preparation and execution in a network model of motor cortex.
    Bachschmid-Romano L; Hatsopoulos NG; Brunel N
    Elife; 2023 May; 12():. PubMed ID: 37166452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of motor cortex network states during learning-associated neural reorganizations.
    Ma Z; Liu H; Komiyama T; Wessel R
    J Neurophysiol; 2020 Nov; 124(5):1327-1342. PubMed ID: 32937084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control.
    Athalye VR; Ganguly K; Costa RM; Carmena JM
    Neuron; 2017 Feb; 93(4):955-970.e5. PubMed ID: 28190641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex.
    Shen L; Alexander GE
    J Neurophysiol; 1997 Mar; 77(3):1171-94. PubMed ID: 9084589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging ideas and tools to study the emergent properties of the cortical neural circuits for voluntary motor control in non-human primates.
    Kalaska JF
    F1000Res; 2019; 8():. PubMed ID: 31275561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Latent Factors and Dynamics in Motor Cortex and Their Application to Brain-Machine Interfaces.
    Pandarinath C; Ames KC; Russo AA; Farshchian A; Miller LE; Dyer EL; Kao JC
    J Neurosci; 2018 Oct; 38(44):9390-9401. PubMed ID: 30381431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response.
    Russo AA; Bittner SR; Perkins SM; Seely JS; London BM; Lara AH; Miri A; Marshall NJ; Kohn A; Jessell TM; Abbott LF; Cunningham JP; Churchland MM
    Neuron; 2018 Feb; 97(4):953-966.e8. PubMed ID: 29398358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Dynamics of Variable Grasp-Movement Preparation in the Macaque Frontoparietal Network.
    Michaels JA; Dann B; Intveld RW; Scherberger H
    J Neurosci; 2018 Jun; 38(25):5759-5773. PubMed ID: 29798892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constraints on neural redundancy.
    Hennig JA; Golub MD; Lund PJ; Sadtler PT; Oby ER; Quick KM; Ryu SI; Tyler-Kabara EC; Batista AP; Yu BM; Chase SM
    Elife; 2018 Aug; 7():. PubMed ID: 30109848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuomotor processing as reflected in the directional discharge of premotor and primary motor cortex neurons.
    Johnson MT; Coltz JD; Hagen MC; Ebner TJ
    J Neurophysiol; 1999 Feb; 81(2):875-94. PubMed ID: 10036299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex.
    Churchland MM; Shenoy KV
    J Neurophysiol; 2007 Jun; 97(6):4235-57. PubMed ID: 17376854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural population dynamics in human motor cortex during movements in people with ALS.
    Pandarinath C; Gilja V; Blabe CH; Nuyujukian P; Sarma AA; Sorice BL; Eskandar EN; Hochberg LR; Henderson JM; Shenoy KV
    Elife; 2015 Jun; 4():e07436. PubMed ID: 26099302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding of temporal intervals from cortical ensemble activity.
    Lebedev MA; O'Doherty JE; Nicolelis MA
    J Neurophysiol; 2008 Jan; 99(1):166-86. PubMed ID: 18003881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The small scale functional topology of movement control: Hierarchical organization of local activity anticipates movement generation in the premotor cortex of primates.
    Bardella G; Pani P; Brunamonti E; Giarrocco F; Ferraina S
    Neuroimage; 2020 Feb; 207():116354. PubMed ID: 31743791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dynamical neural network model for motor cortical activity during movement: population coding of movement trajectories.
    Lukashin AV; Georgopoulos AP
    Biol Cybern; 1993; 69(5-6):517-24. PubMed ID: 8274549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.