BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35621471)

  • 1. Multiscale Characterization of Type I Collagen Fibril Stress-Strain Behavior under Tensile Load: Analytical vs. MD Approaches.
    Gouissem A; Mbarki R; Al Khatib F; Adouni M
    Bioengineering (Basel); 2022 Apr; 9(5):. PubMed ID: 35621471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.
    Depalle B; Qin Z; Shefelbine SJ; Buehler MJ
    J Mech Behav Biomed Mater; 2015 Dec; 52():1-13. PubMed ID: 25153614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steered molecular dynamics characterization of the elastic modulus and deformation mechanisms of single natural tropocollagen molecules.
    Tang M; Li T; Pickering E; Gandhi NS; Burrage K; Gu Y
    J Mech Behav Biomed Mater; 2018 Oct; 86():359-367. PubMed ID: 30015207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation micromechanisms of collagen fibrils under uniaxial tension.
    Tang Y; Ballarini R; Buehler MJ; Eppell SJ
    J R Soc Interface; 2010 May; 7(46):839-50. PubMed ID: 19897533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanics of Type I Collagen.
    Varma S; Orgel JP; Schieber JD
    Biophys J; 2016 Jul; 111(1):50-6. PubMed ID: 27410733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content.
    Depalle B; Qin Z; Shefelbine SJ; Buehler MJ
    J Bone Miner Res; 2016 Feb; 31(2):380-90. PubMed ID: 26866939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain rate induced toughening of individual collagen fibrils.
    Yang F; Das D; Chasiotis I
    Appl Phys Lett; 2022 Mar; 120(11):114101. PubMed ID: 35355883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils.
    Kamml J; Ke CY; Acevedo C; Kammer DS
    J Mech Behav Biomed Mater; 2023 Jul; 143():105870. PubMed ID: 37156073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineral and cross-linking in collagen fibrils: The mechanical behavior of bone tissue at the nano-scale.
    Kamml J; Acevedo C; Kammer DS
    ArXiv; 2024 Mar; ():. PubMed ID: 38562451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.
    Gautieri A; Vesentini S; Redaelli A; Buehler MJ
    Nano Lett; 2011 Feb; 11(2):757-66. PubMed ID: 21207932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior.
    Kamml J; Acevedo C; Kammer DS
    J Mech Behav Biomed Mater; 2023 Dec; 148():106198. PubMed ID: 37890341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior.
    Kamml J; Acevedo C; Kammer DS
    ArXiv; 2023 Aug; ():. PubMed ID: 37608934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen.
    Depalle B; Duarte AG; Fiedler IAK; Pujo-Menjouet L; Buehler MJ; Berteau JP
    Bone; 2018 May; 110():107-114. PubMed ID: 29414596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An embedded element based 2D finite element model for the strength prediction of mineralized collagen fibril using Monte-Carlo type of simulations.
    Sharma R; Awasthi A
    J Biomech; 2020 Jul; 108():109867. PubMed ID: 32635994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress transfer in collagen fibrils reinforcing connective tissues: effects of collagen fibril slenderness and relative stiffness.
    Goh KL; Meakin JR; Aspden RM; Hukins DW
    J Theor Biol; 2007 Mar; 245(2):305-11. PubMed ID: 17123548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear finite element unit-cell model.
    Alizadeh E; Omairey S; Zysset P
    J Mech Behav Biomed Mater; 2023 Mar; 139():105660. PubMed ID: 36638635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.