BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35621471)

  • 21. Tropocollagen springs allow collagen fibrils to stretch elastically.
    Bell JS; Hayes S; Whitford C; Sanchez-Weatherby J; Shebanova O; Terrill NJ; Sørensen TLM; Elsheikh A; Meek KM
    Acta Biomater; 2022 Apr; 142():185-193. PubMed ID: 35081430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules.
    Gautieri A; Buehler MJ; Redaelli A
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):130-7. PubMed ID: 19627816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An integrated approach to investigate age-related modifications of morphological, mechanical and structural properties of type I collagen.
    Van Gulick L; Saby C; Jaisson S; Okwieka A; Gillery P; Dervin E; Morjani H; Beljebbar A
    Acta Biomater; 2022 Jan; 137():64-78. PubMed ID: 34673231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties.
    Christiansen DL; Huang EK; Silver FH
    Matrix Biol; 2000 Sep; 19(5):409-20. PubMed ID: 10980417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical Stimulation
    Peterson BE; Rolfe RA; Kunselman A; Murphy P; Szczesny SE
    Front Cell Dev Biol; 2021; 9():725563. PubMed ID: 34540841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterogeneous nanomechanical properties of type I collagen in longitudinal direction.
    Tang M; Li T; Gandhi NS; Burrage K; Gu Y
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1023-1033. PubMed ID: 28064404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.
    Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P
    J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular and intermolecular effects in collagen fibril mechanics: a multiscale analytical model compared with atomistic and experimental studies.
    Marino M
    Biomech Model Mechanobiol; 2016 Feb; 15(1):133-54. PubMed ID: 26220454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils.
    Tavakol M; Vaughan TJ
    J R Soc Interface; 2023 Jan; 20(198):20220803. PubMed ID: 36695019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanomechanical mapping of single collagen fibrils under tension.
    Peacock CJ; Kreplak L
    Nanoscale; 2019 Aug; 11(30):14417-14425. PubMed ID: 31334733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
    Hijazi KM; Singfield KL; Veres SP
    J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constitutive description of skin dermis: Through analytical continuum and coarse-grained approaches for multi-scale understanding.
    Pissarenko A; Ruestes CJ; Meyers MA
    Acta Biomater; 2020 Apr; 106():208-224. PubMed ID: 32014584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.
    Baldwin SJ; Quigley AS; Clegg C; Kreplak L
    Biophys J; 2014 Oct; 107(8):1794-1801. PubMed ID: 25418160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical properties of a collagen fibril under simulated degradation.
    Malaspina DC; Szleifer I; Dhaher Y
    J Mech Behav Biomed Mater; 2017 Nov; 75():549-557. PubMed ID: 28850925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen fibril tensile response described by a nonlinear Maxwell model.
    Handelshauser M; Chiang YR; Marchetti-Deschmann M; Thurner PJ; Andriotis OG
    J Mech Behav Biomed Mater; 2023 Sep; 145():105991. PubMed ID: 37480709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure.
    Roeder BA; Kokini K; Sturgis JE; Robinson JP; Voytik-Harbin SL
    J Biomech Eng; 2002 Apr; 124(2):214-22. PubMed ID: 12002131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril.
    Svensson RB; Hansen P; Hassenkam T; Haraldsson BT; Aagaard P; Kovanen V; Krogsgaard M; Kjaer M; Magnusson SP
    J Appl Physiol (1985); 2012 Feb; 112(3):419-26. PubMed ID: 22114175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons.
    Svensson RB; Smith ST; Moyer PJ; Magnusson SP
    Acta Biomater; 2018 Apr; 70():270-280. PubMed ID: 29447959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Equilibrium Constitutive Model of Anisotropic Cartilage Damage to Elucidate Mechanisms of Damage Initiation and Progression.
    Stender ME; Regueiro RA; Klisch SM; Ferguson VL
    J Biomech Eng; 2015 Aug; 137(8):081010. PubMed ID: 26043366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.