BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35621891)

  • 1. Airborne Hyperspectral Imagery for Band Selection Using Moth-Flame Metaheuristic Optimization.
    Anand R; Samiaappan S; Veni S; Worch E; Zhou M
    J Imaging; 2022 Apr; 8(5):. PubMed ID: 35621891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved Moth-Flame Optimization Algorithm with Adaptation Mechanism to Solve Numerical and Mechanical Engineering Problems.
    Nadimi-Shahraki MH; Fatahi A; Zamani H; Mirjalili S; Abualigah L
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Clustering Using Moth-Flame Optimization Algorithm.
    Singh T; Saxena N; Khurana M; Singh D; Abdalla M; Alshazly H
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34198501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of Heart Disease Using MFO Based Neural Network on MRI Images.
    K K; N UM; R V
    Curr Med Imaging; 2021; 17(9):1114-1127. PubMed ID: 33573572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-adaptive moth flame optimizer combined with crossover operator and Fibonacci search strategy for COVID-19 CT image segmentation.
    Kumar Sahoo S; Houssein EH; Premkumar M; Kumar Saha A; Emam MM
    Expert Syst Appl; 2023 Oct; 227():120367. PubMed ID: 37193000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Hyperspectral Band Selection Based on Spectral Clustering and Inter-Class Separability Factor].
    Qin FP; Zhang AW; Wang SM; Meng XG; Hu SX; Sun WD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1357-64. PubMed ID: 26415460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved moth-flame algorithm based on cat chaotic and dynamic cosine factor.
    Xu C; Zhang W; Tu Z; Liu D; Cen J; Song H
    Rev Sci Instrum; 2024 Feb; 95(2):. PubMed ID: 38386401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moth Flame Optimization: Theory, Modifications, Hybridizations, and Applications.
    Sahoo SK; Saha AK; Ezugwu AE; Agushaka JO; Abuhaija B; Alsoud AR; Abualigah L
    Arch Comput Methods Eng; 2023; 30(1):391-426. PubMed ID: 36059575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kapur's entropy for multilevel thresholding image segmentation based on moth-flame optimization.
    Ji W; He X
    Math Biosci Eng; 2021 Aug; 18(6):7110-7142. PubMed ID: 34814242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of vision measurement model with an improved moth-flame optimization algorithm.
    Li Y; Wang Z; Cheng Y; Tang Y; Shang Z
    Opt Express; 2019 Jul; 27(15):20800-20815. PubMed ID: 31510169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Innovative Excited-ACS-IDGWO Algorithm for Optimal Biomedical Data Feature Selection.
    Segera D; Mbuthia M; Nyete A
    Biomed Res Int; 2020; 2020():8506365. PubMed ID: 32908920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics.
    Houssein EH; Hosney ME; Elhoseny M; Oliva D; Mohamed WM; Hassaballah M
    Sci Rep; 2020 Sep; 10(1):14439. PubMed ID: 32879410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning Deep Hierarchical Spatial-Spectral Features for Hyperspectral Image Classification Based on Residual 3D-2D CNN.
    Feng F; Wang S; Wang C; Zhang J
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Spectral Band Selection for Enhanced Hyperspectral Remote Sensing Classification Applications.
    Torres RM; Yuen PWT; Yuan C; Piper J; McCullough C; Godfree P
    J Imaging; 2020 Aug; 6(9):. PubMed ID: 34460744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-Aided Diagnosis system for diagnosis of pulmonary emphysema using bio-inspired algorithms.
    Isaac A; Nehemiah HK; Isaac A; Kannan A
    Comput Biol Med; 2020 Sep; 124():103940. PubMed ID: 32858484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Objective Unsupervised Band Selection Method for Hyperspectral Images Classification.
    Ou X; Wu M; Tu B; Zhang G; Li W
    IEEE Trans Image Process; 2023 Mar; PP():. PubMed ID: 37030738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moth-Flame Optimization-Bat Optimization: Map-Reduce Framework for Big Data Clustering Using the Moth-Flame Bat Optimization and Sparse Fuzzy C-Means.
    Ravuri V; Vasundra S
    Big Data; 2020 Jun; 8(3):203-217. PubMed ID: 32429686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy.
    Chen N; Lu K; Zhou H
    Comput Intell Neurosci; 2021; 2021():5592323. PubMed ID: 34239549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimension Reduction for Hyperspectral Remote Sensor Data Based on Multi-Objective Particle Swarm Optimization Algorithm and Game Theory.
    Gao H; Yang Y; Zhang X; Li C; Yang Q; Wang Y
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering Diverse Subset for Unsupervised Hyperspectral Band Selection.
    Yuan Y; Zheng X; Lu X
    IEEE Trans Image Process; 2017 Jan; 26(1):51-64. PubMed ID: 28113180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.