BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35621914)

  • 1. The Effect of Glucagon on Protein Catabolism During Insulin Deficiency: Exchange of Amino Acids Across Skeletal Muscle and the Splanchnic Bed.
    James H; Gonsalves WI; Manjunatha S; Dasari S; Lanza IR; Klaus KA; Vella A; Andrews JC; Nair KS
    Diabetes; 2022 Aug; 71(8):1636-1648. PubMed ID: 35621914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of amino acid exchange and protein dynamics across splanchnic and skeletal muscle beds by insulin in healthy human subjects.
    Meek SE; Persson M; Ford GC; Nair KS
    Diabetes; 1998 Dec; 47(12):1824-35. PubMed ID: 9836512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.
    Zheng L; Zuo F; Zhao S; He P; Wei H; Xiang Q; Pang J; Peng J
    Br J Nutr; 2017 Apr; 117(7):911-922. PubMed ID: 28446262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperglucagonemia during insulin deficiency accelerates protein catabolism.
    Nair KS; Halliday D; Matthews DE; Welle SL
    Am J Physiol; 1987 Aug; 253(2 Pt 1):E208-13. PubMed ID: 3303968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of protein dynamics in splanchnic and skeletal muscle beds by insulin and amino acids in healthy human subjects.
    Nygren J; Nair KS
    Diabetes; 2003 Jun; 52(6):1377-85. PubMed ID: 12765947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a catabolic role of glucagon during an amino acid load.
    Charlton MR; Adey DB; Nair KS
    J Clin Invest; 1996 Jul; 98(1):90-9. PubMed ID: 8690809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of hyperglucagonemia in catabolism associated with type 1 diabetes: effects on leucine metabolism and the resting metabolic rate.
    Charlton MR; Nair KS
    Diabetes; 1998 Nov; 47(11):1748-56. PubMed ID: 9792544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turnover and splanchnic metabolism of free fatty acids and ketones in insulin-dependent diabetics at rest and in response to exercise.
    Wahren J; Sato Y; Ostman J; Hagenfeldt L; Felig P
    J Clin Invest; 1984 May; 73(5):1367-76. PubMed ID: 6715541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of infused amino acids by splanchnic and leg tissues in humans.
    Gelfand RA; Glickman MG; Jacob R; Sherwin RS; DeFronzo RA
    Am J Physiol; 1986 Apr; 250(4 Pt 1):E407-13. PubMed ID: 3963181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review: Influence of postabsorptive metabolism on essential amino acid partitioning in lactating dairy cows.
    Cant JP; Reyes GC; Seymour DJ
    Animal; 2022 Aug; 16 Suppl 3():100573. PubMed ID: 35798662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of insulin on splanchnic and peripheral glucose disposal after an intravenous glucose load in man.
    Saccà L; Cicala M; Trimarco B; Ungaro B; Vigorito C
    J Clin Invest; 1982 Jul; 70(1):117-26. PubMed ID: 6123524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man.
    Louard RJ; Barrett EJ; Gelfand RA
    Clin Sci (Lond); 1990 Nov; 79(5):457-66. PubMed ID: 2174312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of basal glucagon levels in the regulation of splanchnic glucose output and ketogenesis in insulin-deficient humans.
    Björkman O; Felig P; Wahren J
    Clin Physiol; 1984 Jun; 4(3):227-41. PubMed ID: 6146427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The separate and combined effect of leucine and insulin on muscle free amino acids.
    Essén P; Heys SD; Garlick P; Wernerman J
    Clin Physiol; 1994 Sep; 14(5):513-25. PubMed ID: 7820976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of branched-chain-enriched amino acids and insulin on forearm leucine kinetics.
    Zanetti M; Barazzoni R; Kiwanuka E; Tessari P
    Clin Sci (Lond); 1999 Oct; 97(4):437-48. PubMed ID: 10491344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperglucagonemia correlates with plasma levels of non-branched-chain amino acids in patients with liver disease independent of type 2 diabetes.
    Wewer Albrechtsen NJ; Junker AE; Christensen M; Hædersdal S; Wibrand F; Lund AM; Galsgaard KD; Holst JJ; Knop FK; Vilsbøll T
    Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G91-G96. PubMed ID: 28971838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of branched-chain amino acids on placental amino acid transfer and insulin and glucagon release in the ovine fetus.
    Józwik M; Teng C; Wilkening RB; Meschia G; Tooze J; Chung M; Battaglia FC
    Am J Obstet Gynecol; 2001 Aug; 185(2):487-95. PubMed ID: 11518915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucagon's effect on liver protein metabolism in vivo.
    Kraft G; Coate KC; Winnick JJ; Dardevet D; Donahue EP; Cherrington AD; Williams PE; Moore MC
    Am J Physiol Endocrinol Metab; 2017 Sep; 313(3):E263-E272. PubMed ID: 28536182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus.
    Wahren J; Felig P; Cerasi E; Luft R
    J Clin Invest; 1972 Jul; 51(7):1870-8. PubMed ID: 5032528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.