BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 35621978)

  • 21. Bacillus aryabhattai TFG5-mediated synthesis of humic substances from coir pith wastes.
    Muniraj I; Shameer S; Ramachandran P; Uthandi S
    Microb Cell Fact; 2021 Feb; 20(1):48. PubMed ID: 33596930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DOC removal paradigms in highly humic aquatic ecosystems.
    Farjalla VF; Amado AM; Suhett AL; Meirelles-Pereira F
    Environ Sci Pollut Res Int; 2009 Jul; 16(5):531-8. PubMed ID: 19462194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aminoclay-induced humic acid flocculation for efficient harvesting of oleaginous Chlorella sp.
    Lee YC; Oh SY; Lee HU; Kim B; Lee SY; Choi MH; Lee GW; Park JY; Oh YK; Ryu T; Han YK; Chung KS; Huh YS
    Bioresour Technol; 2014 Feb; 153():365-9. PubMed ID: 24388691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses.
    Tadini AM; Pantano G; de Toffoli AL; Fontaine B; Spaccini R; Piccolo A; Moreira AB; Bisinoti MC
    Sci Total Environ; 2015 Feb; 506-507():234-40. PubMed ID: 25460956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation into the role of carboxylic acid and phenolic hydroxyl groups in the plant biostimulant activity of a humic acid purified from an oxidized sub-bituminous coal.
    Lamar RT; Gralian J; Hockaday WC; Jerzykiewicz M; Monda H
    Front Plant Sci; 2024; 15():1328006. PubMed ID: 38751833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenging microalgal vitamins for human health.
    Del Mondo A; Smerilli A; Sané E; Sansone C; Brunet C
    Microb Cell Fact; 2020 Nov; 19(1):201. PubMed ID: 33138823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A promising approach to enhance microalgae productivity by exogenous supply of vitamins.
    Tandon P; Jin Q; Huang L
    Microb Cell Fact; 2017 Nov; 16(1):219. PubMed ID: 29183381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flocculation kinetics and mechanisms of microalgae- and clay-containing suspensions in different microalgal growth phases.
    Ho QN; Fettweis M; Hur J; Desmit X; Kim JI; Jung DW; Lee SD; Lee S; Choi YY; Lee BJ
    Water Res; 2022 Nov; 226():119300. PubMed ID: 36323221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications.
    da Silva Ferreira V; Sant'Anna C
    World J Microbiol Biotechnol; 2017 Jan; 33(1):20. PubMed ID: 27909993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants?
    Chanda MJ; Merghoub N; El Arroussi H
    World J Microbiol Biotechnol; 2019 Nov; 35(11):177. PubMed ID: 31696403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances.
    Aristilde L; Sposito G
    Environ Toxicol Chem; 2013 Jul; 32(7):1467-78. PubMed ID: 23456646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microalgal cultivation with biogas slurry for biofuel production.
    Zhu L; Yan C; Li Z
    Bioresour Technol; 2016 Nov; 220():629-636. PubMed ID: 27599623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Key Roles of Size and Crystallinity of Nanosized Iron Hydr(oxides) Stabilized by Humic Substances in Iron Bioavailability to Plants.
    Kulikova NA; Polyakov AY; Lebedev VA; Abroskin DP; Volkov DS; Pankratov DA; Klein OI; Senik SV; Sorkina TA; Garshev AV; Veligzhanin AA; Garcia Mina JM; Perminova IV
    J Agric Food Chem; 2017 Dec; 65(51):11157-11169. PubMed ID: 29206449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of nano-TiO
    Luo L; Luo S; Wang H; Hu K; Lin X; Liu L; Yan B
    Bioresour Technol; 2021 Oct; 337():125414. PubMed ID: 34174768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors.
    Trevisan S; Francioso O; Quaggiotti S; Nardi S
    Plant Signal Behav; 2010 Jun; 5(6):635-43. PubMed ID: 20495384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavior of humic substances in the liquid-liquid system directly measured using tritium label.
    Chernysheva MG; Badun GA; Kulikova NA; Perminova IV
    Chemosphere; 2020 Jan; 238():124646. PubMed ID: 31473523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microalgal flocculation: Global research progress and prospects for algal biorefinery.
    Malik S; Khan F; Atta Z; Habib N; Haider MN; Wang N; Alam A; Jambi EJ; Gull M; Mehmood MA; Zhu H
    Biotechnol Appl Biochem; 2020 Jan; 67(1):52-60. PubMed ID: 31584208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The potential use of
    Martini F; Beghini G; Zanin L; Varanini Z; Zamboni A; Ballottari M
    Algal Res; 2021 Dec; 60():. PubMed ID: 34745855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.