BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 35621978)

  • 41. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions.
    Markou G; Nerantzis E
    Biotechnol Adv; 2013 Dec; 31(8):1532-42. PubMed ID: 23928208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Abiotic association of PAEs with humic substances and its influence on the fate of PAEs in landfill leachate.
    Xiaoli C; Rong J; Jun W; Huanhuan T; Youcai Z
    Chemosphere; 2010 Mar; 78(11):1362-7. PubMed ID: 20110102
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fate and fouling characteristics of fluorescent dissolved organic matter in ultrafiltration of terrestrial humic substances.
    Quang VL; Kim HC; Maqbool T; Hur J
    Chemosphere; 2016 Dec; 165():126-133. PubMed ID: 27643658
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil.
    Fava F; Piccolo A
    Biotechnol Bioeng; 2002 Jan; 77(2):204-11. PubMed ID: 11753927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review.
    Lipczynska-Kochany E
    Chemosphere; 2018 Jul; 202():420-437. PubMed ID: 29579677
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comprehensive modeling and predicting light transmission in microalgal biofilm.
    Ma S; Huang Y; Zhang B; Zhu X; Xia A; Zhu X; Liao Q
    J Environ Manage; 2023 Jan; 326(Pt A):116757. PubMed ID: 36395642
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular characteristics of microalgal extracellular polymeric substances were different among phyla and correlated with the extracellular persistent free radicals.
    Liu Y; Yang F; Liu S; Zhang X; Li M
    Sci Total Environ; 2023 Jan; 857(Pt 3):159704. PubMed ID: 36302439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Comprehensive Review of Microalgae and Cyanobacteria-Based Biostimulants for Agriculture Uses.
    Chabili A; Minaoui F; Hakkoum Z; Douma M; Meddich A; Loudiki M
    Plants (Basel); 2024 Jan; 13(2):. PubMed ID: 38256713
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of two different humic substances on selected coccal green algae and cyanobacteria--changes in growth and photosynthetic performance.
    Bährs H; Steinberg CE
    Environ Sci Pollut Res Int; 2012 Feb; 19(2):335-46. PubMed ID: 21751018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Humic substances. Part 1: Dissolved humic substances (HS) in aquaculture and ornamental fish breeding.
    Meinelt T; Schreckenbach K; Pietrock M; Heidrich S; Steinberg CE
    Environ Sci Pollut Res Int; 2008 Jan; 15(1):17-22. PubMed ID: 18306883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.
    Worms IA; Adenmatten D; Miéville P; Traber J; Slaveykova VI
    Chemosphere; 2015 Nov; 138():908-15. PubMed ID: 25563161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The improvement of multi-contaminated sandy loam soil chemical and biological properties by the biochar, wood ash, and humic substances amendments.
    Pukalchik M; Mercl F; Panova M; Břendová K; Terekhova VA; Tlustoš P
    Environ Pollut; 2017 Oct; 229():516-524. PubMed ID: 28628867
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of humic substances on the aqueous stability of cerium dioxide nanoparticles and their toxicity to aquatic organisms.
    Yu Q; Wang Z; Zhai Y; Zhang F; Vijver MG; Peijnenburg WJGM
    Sci Total Environ; 2021 Aug; 781():146583. PubMed ID: 33798891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Progress in physicochemical parameters of microalgae cultivation for biofuel production.
    Hossain N; Mahlia TMI
    Crit Rev Biotechnol; 2019 Sep; 39(6):835-859. PubMed ID: 31185749
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities.
    Van Den Hende S; Vervaeren H; Boon N
    Biotechnol Adv; 2012; 30(6):1405-24. PubMed ID: 22425735
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of persulfate by humic substances: Stoichiometry and changes in the optical properties of the humic substances.
    Kim C; Chin YP; Son H; Hwang I
    Water Res; 2022 Apr; 212():118107. PubMed ID: 35085845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy.
    Behera B; Venkata Supraja K; Paramasivan B
    Bioresour Technol; 2021 Nov; 339():125588. PubMed ID: 34298244
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein encapsulation by humic substances.
    Tomaszewski JE; Schwarzenbach RP; Sander M
    Environ Sci Technol; 2011 Jul; 45(14):6003-10. PubMed ID: 21678916
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock.
    Zhu LD; Li ZH; Hiltunen E
    Biomed Res Int; 2016; 2016():8792548. PubMed ID: 27725942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review.
    Di Iorio E; Circelli L; Angelico R; Torrent J; Tan W; Colombo C
    Chemosphere; 2022 Sep; 303(Pt 2):135172. PubMed ID: 35649442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.