These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35622061)

  • 1. Daphnia magna's Favorite Snack: Biofouled Plastics.
    Polhill L; de Bruijn R; Amaral-Zettler L; Praetorius A; van Wezel A
    Environ Toxicol Chem; 2022 Aug; 41(8):1977-1981. PubMed ID: 35622061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Polyester Fibers and Car Tire Particles on Freshwater Invertebrates.
    Schell T; Martinez-Perez S; Dafouz R; Hurley R; Vighi M; Rico A
    Environ Toxicol Chem; 2022 Jun; 41(6):1555-1567. PubMed ID: 35353397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Exposure to Cadmium, Microplastics, and Their Mixture on Survival, Growth, Feeding, and Life History of Daphnia magna.
    Zink L; Shearer AY; Wiseman S; Pyle GG
    Environ Toxicol Chem; 2023 Jun; 42(6):1401-1408. PubMed ID: 37036245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm formation strongly influences the vector transport of triclosan-loaded polyethylene microplastics.
    Verdú I; Amariei G; Rueda-Varela C; González-Pleiter M; Leganés F; Rosal R; Fernández-Piñas F
    Sci Total Environ; 2023 Feb; 859(Pt 1):160231. PubMed ID: 36402321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ingestion and Toxicity of Polystyrene Microplastics in Freshwater Bivalves.
    Weber A; Jeckel N; Weil C; Umbach S; Brennholt N; Reifferscheid G; Wagner M
    Environ Toxicol Chem; 2021 Aug; 40(8):2247-2260. PubMed ID: 33928672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caddisfly Larvae are a Driver of Plastic Litter Breakdown and Microplastic Formation in Freshwater Environments.
    Valentine K; Cross R; Cox R; Woodmancy G; Boxall ABA
    Environ Toxicol Chem; 2022 Dec; 41(12):3058-3069. PubMed ID: 36200670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ingestion and Egestion of Microplastics by the Cladoceran Daphnia magna: Effects of Regular and Irregular Shaped Plastic and Sorbed Phenanthrene.
    Frydkjær CK; Iversen N; Roslev P
    Bull Environ Contam Toxicol; 2017 Dec; 99(6):655-661. PubMed ID: 29027571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquatic Biofilms-Sink or Source of Microplastics? A Critical Reflection on Current Knowledge.
    Kalčíková G; Bundschuh M
    Environ Toxicol Chem; 2022 Apr; 41(4):838-843. PubMed ID: 34407241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No Effect of Realistic Concentrations of Polyester Microplastic Fibers on Freshwater Zooplankton Communities.
    Klasios N; Kim JO; Tseng M
    Environ Toxicol Chem; 2024 Feb; 43(2):418-428. PubMed ID: 38018737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thermal regime modifies the response of aquatic keystone species Daphnia to microplastics: Evidence from population fitness, accumulation, histopathological analysis and candidate gene expression.
    Lyu K; Cao C; Li D; Akbar S; Yang Z
    Sci Total Environ; 2021 Aug; 783():147154. PubMed ID: 34088136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level.
    Amariei G; Rosal R; Fernández-Piñas F; Koelmans AA
    Environ Pollut; 2022 Feb; 294():118622. PubMed ID: 34871644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invertebrate Species for the Bioavailability and Accumulation Assessment of Manufactured Polymer-Based Nano- and Microplastics.
    Kuehr S; Esser D; Schlechtriem C
    Environ Toxicol Chem; 2022 Apr; 41(4):961-974. PubMed ID: 35188296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant decline of Daphnia magna population biomass due to microplastic exposure.
    Bosker T; Olthof G; Vijver MG; Baas J; Barmentlo SH
    Environ Pollut; 2019 Jul; 250():669-675. PubMed ID: 31035149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent chronic toxicity of fragmented polyethylene microplastics to Daphnia magna.
    An D; Na J; Song J; Jung J
    Chemosphere; 2021 May; 271():129591. PubMed ID: 33453485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effects of water temperature, microplastics and ammonium as second and third order stressors on Daphnia magna.
    Serra T; Barcelona A; Pous N; Salvadó V; Colomer J
    Environ Pollut; 2020 Dec; 267():115439. PubMed ID: 32892007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna.
    Rehse S; Kloas W; Zarfl C
    Chemosphere; 2016 Jun; 153():91-9. PubMed ID: 27010171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters.
    Jemec Kokalj A; Kuehnel D; Puntar B; Žgajnar Gotvajn A; Kalčikova G
    Environ Pollut; 2019 Nov; 254(Pt A):112980. PubMed ID: 31401519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Microplastic on the Population Dynamics of a Marine Copepod: Insights from a Laboratory Experiment and a Mechanistic Model.
    Everaert G; Vlaeminck K; Vandegehuchte MB; Janssen CR
    Environ Toxicol Chem; 2022 Jul; 41(7):1663-1674. PubMed ID: 35452557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna.
    Zimmermann L; Göttlich S; Oehlmann J; Wagner M; Völker C
    Environ Pollut; 2020 Dec; 267():115392. PubMed ID: 32871484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of biofilm colonization on the sinking of microplastics in three freshwater environments.
    Miao L; Gao Y; Adyel TM; Huo Z; Liu Z; Wu J; Hou J
    J Hazard Mater; 2021 Jul; 413():125370. PubMed ID: 33609862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.