These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35622225)

  • 1. Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses.
    Gong X; Luo H; Hong L; Wu J; Wu H; Song C; Zhao W; Han Y; Dao Y; Zhang X; Zhu D; Luo Y
    J Microbiol; 2022 Aug; 60(8):832-842. PubMed ID: 35622225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.
    Kim B; Cho BR; Hahn JS
    Biotechnol Bioeng; 2014 Jan; 111(1):115-24. PubMed ID: 23836015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae.
    Vuralhan Z; Morais MA; Tai SL; Piper MD; Pronk JT
    Appl Environ Microbiol; 2003 Aug; 69(8):4534-41. PubMed ID: 12902239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophol formation by Zygosaccharomyces priorianus.
    Rosazza JP; Juhl R; Davis P
    Appl Microbiol; 1973 Jul; 26(1):98-105. PubMed ID: 4580197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae.
    Li Y; Sun J; Fu Z; He Y; Chen X; Wang S; Zhang L; Jian J; Yang W; Liu C; Liu X; Yang Y; Bai Z
    Biotechnol Biofuels Bioprod; 2024 Oct; 17(1):130. PubMed ID: 39415302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae.
    Wang Z; Bai X; Guo X; He X
    J Ind Microbiol Biotechnol; 2017 Jan; 44(1):129-139. PubMed ID: 27770224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptome analysis reveals the key regulatory genes for higher alcohol formation by yeast at different α-amino nitrogen concentrations.
    Wang YP; Sun ZG; Zhang CY; Zhang QZ; Guo XW; Xiao DG
    Food Microbiol; 2021 May; 95():103713. PubMed ID: 33397627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quorum-Sensing Kinetics in Saccharomyces cerevisiae: A Symphony of ARO Genes and Aromatic Alcohols.
    Avbelj M; Zupan J; Kranjc L; Raspor P
    J Agric Food Chem; 2015 Sep; 63(38):8544-50. PubMed ID: 26367540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.
    Romagnoli G; Luttik MA; Kötter P; Pronk JT; Daran JM
    Appl Environ Microbiol; 2012 Nov; 78(21):7538-48. PubMed ID: 22904058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance.
    Machado CR; Praekelt UM; de Oliveira RC; Barbosa AC; Byrne KL; Meacock PA; Menck CF
    J Mol Biol; 1997 Oct; 273(1):114-21. PubMed ID: 9367751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.
    Chen X; Wang Z; Guo X; Liu S; He X
    J Biotechnol; 2017 Jan; 242():83-91. PubMed ID: 27908775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.
    Daugherty JR; Rai R; el Berry HM; Cooper TG
    J Bacteriol; 1993 Jan; 175(1):64-73. PubMed ID: 8416910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction.
    Chen L; Chen M; Ma C; Zeng AP
    Metab Eng; 2018 May; 47():434-444. PubMed ID: 29733896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and analysis of a sake yeast mutant with phenylalanine accumulation.
    Nishimura A; Isogai S; Murakami N; Hotta N; Kotaka A; Matsumura K; Hata Y; Ishida H; Takagi H
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 34788829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cluster of three genes responsible for allantoin degradation in Saccharomyces cerevisiae.
    Cooper TG; Gorski M; Turoscy V
    Genetics; 1979 Jun; 92(2):383-96. PubMed ID: 385448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the Deletion of Genes Related to Amino Acid Metabolism on the Production of Higher Alcohols by
    Wang YP; Wei XQ; Guo XW; Xiao DG
    Biomed Res Int; 2020; 2020():6802512. PubMed ID: 33204707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae.
    Lee K; Hahn JS
    Mol Microbiol; 2013 Jun; 88(6):1120-34. PubMed ID: 23651256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production.
    Kim SJ; Lee JE; Lee DY; Park H; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8989-9002. PubMed ID: 30121750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production.
    Xu G; Hua Q; Duan N; Liu L; Chen J
    Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.