These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35622719)
1. Analysis of ways to reduce potential health risk from ultrafine and fine particles emitted from 3D printers in the makerspace. Yeom S; Kim H; Hong T; Jeong K Indoor Air; 2022 May; 32(5):e13053. PubMed ID: 35622719 [TBL] [Abstract][Full Text] [Related]
2. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Stabile L; Scungio M; Buonanno G; Arpino F; Ficco G Indoor Air; 2017 Mar; 27(2):398-408. PubMed ID: 27219830 [TBL] [Abstract][Full Text] [Related]
3. Parameters Influencing the Emission of Ultrafine Particles during 3D Printing. Chýlek R; Kudela L; Pospíšil J; Šnajdárek L Int J Environ Res Public Health; 2021 Nov; 18(21):. PubMed ID: 34770184 [TBL] [Abstract][Full Text] [Related]
4. Fine and ultrafine particles emitted from laser printers as indoor air contaminants in German offices. Tang T; Hurraß J; Gminski R; Mersch-Sundermann V Environ Sci Pollut Res Int; 2012 Nov; 19(9):3840-9. PubMed ID: 22095199 [TBL] [Abstract][Full Text] [Related]
5. [Ultrafine particle emissions from laser printers]. Grana M; Vicentini L; Pietroiusti A; Magrini A G Ital Med Lav Ergon; 2015; 37(3):135-43. PubMed ID: 26749975 [TBL] [Abstract][Full Text] [Related]
6. Emission of particulate matter from a desktop three-dimensional (3D) printer. Yi J; LeBouf RF; Duling MG; Nurkiewicz T; Chen BT; Schwegler-Berry D; Virji MA; Stefaniak AB J Toxicol Environ Health A; 2016; 79(11):453-65. PubMed ID: 27196745 [TBL] [Abstract][Full Text] [Related]
7. Reducing ultrafine particulate emission from multiple 3D printers in an office environment using a prototype engineering control. Dunn KL; Hammond D; Menchaca K; Roth G; Dunn KH J Nanopart Res; 2020 May; 22(2):. PubMed ID: 34552386 [TBL] [Abstract][Full Text] [Related]
8. Effect of nozzle temperature on the emission rate of ultrafine particles during 3D printing. Jeon H; Park J; Kim S; Park K; Yoon C Indoor Air; 2020 Mar; 30(2):306-314. PubMed ID: 31743481 [TBL] [Abstract][Full Text] [Related]
9. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer. Stefaniak AB; LeBouf RF; Yi J; Ham J; Nurkewicz T; Schwegler-Berry DE; Chen BT; Wells JR; Duling MG; Lawrence RB; Martin SB; Johnson AR; Virji MA J Occup Environ Hyg; 2017 Jul; 14(7):540-550. PubMed ID: 28440728 [TBL] [Abstract][Full Text] [Related]
10. Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers. Stefaniak AB; Bowers LN; Knepp AK; Luxton TP; Peloquin DM; Baumann EJ; Ham JE; Wells JR; Johnson AR; LeBouf RF; Su FC; Martin SB; Virji MA J Occup Environ Hyg; 2019 Aug; 16(8):519-531. PubMed ID: 31094667 [TBL] [Abstract][Full Text] [Related]
11. 3D Printer Particle Emissions: Translation to Internal Dose in Adults and Children. Byrley P; Boyes WK; Rogers K; Jarabek AM J Aerosol Sci; 2021 May; 154():1-12. PubMed ID: 35999899 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Ultrafine Particles and VOCs Emitted from a 3D Printer. Bernatikova S; Dudacek A; Prichystalova R; Klecka V; Kocurkova L Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33494483 [TBL] [Abstract][Full Text] [Related]
13. Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments. Azimi P; Zhao D; Pouzet C; Crain NE; Stephens B Environ Sci Technol; 2016 Feb; 50(3):1260-8. PubMed ID: 26741485 [TBL] [Abstract][Full Text] [Related]
14. Metal compositions of particle emissions from material extrusion 3D printing: Emission sources and indoor exposure modeling. Zhang Q; Weber RJ; Luxton TP; Peloquin DM; Baumann EJ; Black MS Sci Total Environ; 2023 Feb; 860():160512. PubMed ID: 36442638 [TBL] [Abstract][Full Text] [Related]
15. Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials. Zhang Q; Pardo M; Rudich Y; Kaplan-Ashiri I; Wong JPS; Davis AY; Black MS; Weber RJ Environ Sci Technol; 2019 Oct; 53(20):12054-12061. PubMed ID: 31513393 [TBL] [Abstract][Full Text] [Related]
16. Using particle dimensionality-based modeling to estimate lung carcinogenicity of 3D printer emissions. Korchevskiy AA; Hill WC; Hull M; Korchevskiy A J Appl Toxicol; 2024 Apr; 44(4):564-581. PubMed ID: 37950573 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of ventilation efficiency on ultrafine particle removal in university MakerSpaces. Secondo LE; Adawi HI; Cuddehe J; Hopson K; Schumacher A; Mendoza L; Cartin C; Lewinski NA Atmos Environ (1994); 2020 Mar; 224():. PubMed ID: 34305433 [TBL] [Abstract][Full Text] [Related]
18. Fine and ultrafine particle doses in the respiratory tract from digital printing operations. Voliotis A; Karali I; Kouras A; Samara C Environ Sci Pollut Res Int; 2017 Jan; 24(3):3027-3037. PubMed ID: 27848134 [TBL] [Abstract][Full Text] [Related]
19. A pilot study of occupational exposure to ultrafine particles during 3D printing in research laboratories. Felici G; Lachowicz JI; Milia S; Cannizzaro E; Cirrincione L; Congiu T; Jaremko M; Campagna M; Lecca LI Front Public Health; 2023; 11():1144475. PubMed ID: 37333549 [TBL] [Abstract][Full Text] [Related]
20. Emissions and health risks from the use of 3D printers in an occupational setting. Chan FL; Hon CY; Tarlo SM; Rajaram N; House R J Toxicol Environ Health A; 2020 Apr; 83(7):279-287. PubMed ID: 32316869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]