These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35622896)

  • 1. Pruning recurrent neural networks replicates adolescent changes in working memory and reinforcement learning.
    Averbeck BB
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2121331119. PubMed ID: 35622896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent neural networks that learn multi-step visual routines with reinforcement learning.
    Mollard S; Wacongne C; Bohte SM; Roelfsema PR
    PLoS Comput Biol; 2024 Apr; 20(4):e1012030. PubMed ID: 38683837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex.
    Chung DW; Wills ZP; Fish KN; Lewis DA
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):E629-E637. PubMed ID: 28074037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State.
    Sarazin MXB; Victor J; Medernach D; Naudé J; Delord B
    Front Neural Circuits; 2021; 15():648538. PubMed ID: 34305535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement Learning in Spiking Neural Networks with Stochastic and Deterministic Synapses.
    Yuan M; Wu X; Yan R; Tang H
    Neural Comput; 2019 Dec; 31(12):2368-2389. PubMed ID: 31614099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The information theory of developmental pruning: Optimizing global network architectures using local synaptic rules.
    Scholl C; Rule ME; Hennig MH
    PLoS Comput Biol; 2021 Oct; 17(10):e1009458. PubMed ID: 34634045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming Long-Term Catastrophic Forgetting Through Adversarial Neural Pruning and Synaptic Consolidation.
    Peng J; Tang B; Jiang H; Li Z; Lei Y; Lin T; Li H
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4243-4256. PubMed ID: 33577459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A working memory model based on fast Hebbian learning.
    Sandberg A; Tegnér J; Lansner A
    Network; 2003 Nov; 14(4):789-802. PubMed ID: 14653503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Working Memory Through Selective Gating and Attentional Tagging.
    Kruijne W; Bohte SM; Roelfsema PR; Olivers CNL
    Neural Comput; 2021 Jan; 33(1):1-40. PubMed ID: 33080159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distentangling the systems contributing to changes in learning during adolescence.
    Master SL; Eckstein MK; Gotlieb N; Dahl R; Wilbrecht L; Collins AGE
    Dev Cogn Neurosci; 2020 Feb; 41():100732. PubMed ID: 31826837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Behavior and Neural Dynamics across Adolescent Development.
    Liuzzi L; Pine DS; Fox NA; Averbeck BB
    J Neurosci; 2023 Dec; 43(50):8723-8732. PubMed ID: 37848282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathological effects of cortical architecture on working memory in schizophrenia.
    Gore CD; Bányai M; Gray PJ; Diwadkar V; Erdi P
    Pharmacopsychiatry; 2010 May; 43 Suppl 1():S92-7. PubMed ID: 20480449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis.
    Collins AG; Frank MJ
    Eur J Neurosci; 2012 Apr; 35(7):1024-35. PubMed ID: 22487033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex.
    Tsuda B; Tye KM; Siegelmann HT; Sejnowski TJ
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29872-29882. PubMed ID: 33154155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related differences in prefrontal glutamate are associated with increased working memory decay that gives the appearance of learning deficits.
    Rmus M; He M; Baribault B; Walsh EG; Festa EK; Collins AGE; Nassar MR
    Elife; 2023 Apr; 12():. PubMed ID: 37070807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain.
    Finn AS; Sheridan MA; Kam CL; Hinshaw S; D'Esposito M
    J Neurosci; 2010 Aug; 30(33):11062-7. PubMed ID: 20720113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometry of neural computation unifies working memory and planning.
    Ehrlich DB; Murray JD
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2115610119. PubMed ID: 36067286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Working memory contributions to reinforcement learning impairments in schizophrenia.
    Collins AG; Brown JK; Gold JM; Waltz JA; Frank MJ
    J Neurosci; 2014 Oct; 34(41):13747-56. PubMed ID: 25297101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromorphic learning, working memory, and metaplasticity in nanowire networks.
    Loeffler A; Diaz-Alvarez A; Zhu R; Ganesh N; Shine JM; Nakayama T; Kuncic Z
    Sci Adv; 2023 Apr; 9(16):eadg3289. PubMed ID: 37083527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gated spiking neural network using Iterative Free-Energy Optimization and rank-order coding for structure learning in memory sequences (INFERNO GATE).
    Pitti A; Quoy M; Lavandier C; Boucenna S
    Neural Netw; 2020 Jan; 121():242-258. PubMed ID: 31581065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.