These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35622896)

  • 21. A reinforcement learning framework for spiking networks with dynamic synapses.
    El-Laithy K; Bogdan M
    Comput Intell Neurosci; 2011; 2011():869348. PubMed ID: 22046180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Storage capacity diverges with synaptic efficiency in an associative memory model with synaptic delay and pruning.
    Miyoshi S; Okada M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1215-27. PubMed ID: 15484896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient reinforcement learning of a reservoir network model of parametric working memory achieved with a cluster population winner-take-all readout mechanism.
    Cheng Z; Deng Z; Hu X; Zhang B; Yang T
    J Neurophysiol; 2015 Dec; 114(6):3296-305. PubMed ID: 26445865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Persistent Spiking Activity Underlies Working Memory.
    Constantinidis C; Funahashi S; Lee D; Murray JD; Qi XL; Wang M; Arnsten AFT
    J Neurosci; 2018 Aug; 38(32):7020-7028. PubMed ID: 30089641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prefrontal cortical-specific differences in behavior and synaptic plasticity between adolescent and adult mice.
    Konstantoudaki X; Chalkiadaki K; Vasileiou E; Kalemaki K; Karagogeos D; Sidiropoulou K
    J Neurophysiol; 2018 Mar; 119(3):822-833. PubMed ID: 29167323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks.
    Kim R; Sejnowski TJ
    Nat Neurosci; 2021 Jan; 24(1):129-139. PubMed ID: 33288909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.
    Navlakha S; Barth AL; Bar-Joseph Z
    PLoS Comput Biol; 2015 Jul; 11(7):e1004347. PubMed ID: 26217933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.
    Chadderdon GL; Neymotin SA; Kerr CC; Lytton WW
    PLoS One; 2012; 7(10):e47251. PubMed ID: 23094042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Working Memory and Decision-Making in a Frontoparietal Circuit Model.
    Murray JD; Jaramillo J; Wang XJ
    J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
    Fiebig F; Lansner A
    J Neurosci; 2017 Jan; 37(1):83-96. PubMed ID: 28053032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laminar pattern of adolescent development changes in working memory neuronal activity.
    Zhu J; Hammond BM; Zhou XM; Constantinidis C
    J Neurophysiol; 2023 Oct; 130(4):980-989. PubMed ID: 37703490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural circuits for learning context-dependent associations of stimuli.
    Zhu H; Paschalidis IC; Hasselmo ME
    Neural Netw; 2018 Nov; 107():48-60. PubMed ID: 30177226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation.
    Laroche S; Davis S; Jay TM
    Hippocampus; 2000; 10(4):438-46. PubMed ID: 10985283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex.
    Deco G; Rolls ET
    Eur J Neurosci; 2003 Oct; 18(8):2374-90. PubMed ID: 14622200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prefrontal Computation as Active Inference.
    Parr T; Rikhye RV; Halassa MM; Friston KJ
    Cereb Cortex; 2020 Mar; 30(2):682-695. PubMed ID: 31298270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks.
    He Y; Dong X; Kang G; Fu Y; Yan C; Yang Y
    IEEE Trans Cybern; 2020 Aug; 50(8):3594-3604. PubMed ID: 31478883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using a speech perception neural network computer simulation to contrast neuroanatomic versus neuromodulatory models of auditory hallucinations.
    Hoffman RE; McGlashan TH
    Pharmacopsychiatry; 2006 Feb; 39 Suppl 1():S54-64. PubMed ID: 16508898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Tortoise and the Hare: Interactions between Reinforcement Learning and Working Memory.
    Collins AGE
    J Cogn Neurosci; 2018 Oct; 30(10):1422-1432. PubMed ID: 29346018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Banishing the homunculus: making working memory work.
    Hazy TE; Frank MJ; O'Reilly RC
    Neuroscience; 2006 Apr; 139(1):105-18. PubMed ID: 16343792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.