These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35622896)

  • 41. Jump-GRS: a multi-phase approach to structured pruning of neural networks for neural decoding.
    Wu X; Lin DT; Chen R; Bhattacharyya SS
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37429288
    [No Abstract]   [Full Text] [Related]  

  • 42. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural correlates of working memory development in adolescent primates.
    Zhou X; Zhu D; Qi XL; Li S; King SG; Salinas E; Stanford TR; Constantinidis C
    Nat Commun; 2016 Nov; 7():13423. PubMed ID: 27827365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A self-organizing short-term dynamical memory network.
    Federer C; Zylberberg J
    Neural Netw; 2018 Oct; 106():30-41. PubMed ID: 30007123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Circuit mechanisms for the maintenance and manipulation of information in working memory.
    Masse NY; Yang GR; Song HF; Wang XJ; Freedman DJ
    Nat Neurosci; 2019 Jul; 22(7):1159-1167. PubMed ID: 31182866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex.
    Hempel CM; Hartman KH; Wang XJ; Turrigiano GG; Nelson SB
    J Neurophysiol; 2000 May; 83(5):3031-41. PubMed ID: 10805698
    [TBL] [Abstract][Full Text] [Related]  

  • 47. EvoPruneDeepTL: An evolutionary pruning model for transfer learning based deep neural networks.
    Poyatos J; Molina D; Martinez AD; Del Ser J; Herrera F
    Neural Netw; 2023 Jan; 158():59-82. PubMed ID: 36442374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation.
    Doll BB; Jacobs WJ; Sanfey AG; Frank MJ
    Brain Res; 2009 Nov; 1299():74-94. PubMed ID: 19595993
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural signature of flexible coding in prefrontal cortex.
    Bocincova A; Buschman TJ; Stokes MG; Manohar SG
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2200400119. PubMed ID: 36161948
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer.
    Trumbo MC; Matzen LE; Coffman BA; Hunter MA; Jones AP; Robinson CSH; Clark VP
    Neuropsychologia; 2016 Dec; 93(Pt A):85-96. PubMed ID: 27756695
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimal pruning in neural networks.
    Barbato DM; Kinouchi O
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8387-94. PubMed ID: 11138138
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study.
    Simmonds DJ; Hallquist MN; Luna B
    Neuroimage; 2017 Aug; 157():695-704. PubMed ID: 28456583
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An ensemble code in medial prefrontal cortex links prior events to outcomes during learning.
    Maggi S; Peyrache A; Humphries MD
    Nat Commun; 2018 Jun; 9(1):2204. PubMed ID: 29880806
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pruning recurrent neural networks for improved generalization performance.
    Giles CL; Omlin CW
    IEEE Trans Neural Netw; 1994; 5(5):848-51. PubMed ID: 18267860
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia.
    O'Reilly RC; Frank MJ
    Neural Comput; 2006 Feb; 18(2):283-328. PubMed ID: 16378516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pruning artificial neural networks using neural complexity measures.
    Jorgensen TD; Haynes BP; Norlund CC
    Int J Neural Syst; 2008 Oct; 18(5):389-403. PubMed ID: 18991362
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Iterative free-energy optimization for recurrent neural networks (INFERNO).
    Pitti A; Gaussier P; Quoy M
    PLoS One; 2017; 12(3):e0173684. PubMed ID: 28282439
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adolescent social defeat decreases spatial working memory performance in adulthood.
    Novick AM; Miiller LC; Forster GL; Watt MJ
    Behav Brain Funct; 2013 Oct; 9():39. PubMed ID: 24134918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.