These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
588 related articles for article (PubMed ID: 35622945)
1. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach. Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945 [TBL] [Abstract][Full Text] [Related]
2. Structural, electronic and thermoelectric properties of GeC and MXO (M = Ti, Zr and X = S, Se) monolayers and their van der Waals heterostructures. Bashir K; Bilal M; Amin B; Chen Y; Idrees M RSC Adv; 2023 Mar; 13(14):9624-9635. PubMed ID: 36968037 [TBL] [Abstract][Full Text] [Related]
3. The van der Waals interaction and absorption and electron circular dichroism spectra of two-dimensional bilayer stacked structures. Xu C; Ding Y; Wang S; Cao S Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123182. PubMed ID: 37517268 [TBL] [Abstract][Full Text] [Related]
4. High-order superlattices by rolling up van der Waals heterostructures. Zhao B; Wan Z; Liu Y; Xu J; Yang X; Shen D; Zhang Z; Guo C; Qian Q; Li J; Wu R; Lin Z; Yan X; Li B; Zhang Z; Ma H; Li B; Chen X; Qiao Y; Shakir I; Almutairi Z; Wei F; Zhang Y; Pan X; Huang Y; Ping Y; Duan X; Duan X Nature; 2021 Mar; 591(7850):385-390. PubMed ID: 33731947 [TBL] [Abstract][Full Text] [Related]
5. 2D layered BP/InSe and BP/Janus In Cheng K; Xu J; Guo X; Guo S; Su Y Phys Chem Chem Phys; 2023 Jul; 25(26):17360-17369. PubMed ID: 37347175 [TBL] [Abstract][Full Text] [Related]
6. First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers. Alam Q; Muhammad S; Idrees M; Hieu NV; Binh NTT; Nguyen C; Amin B RSC Adv; 2021 Apr; 11(24):14263-14268. PubMed ID: 35423989 [TBL] [Abstract][Full Text] [Related]
7. Novel Van Der Waals Heterostructures Based on Borophene, Graphene-like GaN and ZnO for Nanoelectronics: A First Principles Study. Slepchenkov MM; Kolosov DA; Glukhova OE Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744141 [TBL] [Abstract][Full Text] [Related]
8. Band Gap Opening in Borophene/GaN and Borophene/ZnO Van der Waals Heterostructures Using Axial Deformation: First-Principles Study. Slepchenkov MM; Kolosov DA; Nefedov IS; Glukhova OE Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556727 [TBL] [Abstract][Full Text] [Related]
9. Interlayer Interactions in 1D Van der Waals Moiré Superlattices. Zhao S; Kitaura R; Moon P; Koshino M; Wang F Adv Sci (Weinh); 2022 Jan; 9(2):e2103460. PubMed ID: 34841726 [TBL] [Abstract][Full Text] [Related]
10. Biaxial strain, electric field and interlayer distance-tailored electronic structure and magnetic properties of two-dimensional g-C Gao Y; Zhou B; Wang X Phys Chem Chem Phys; 2021 Mar; 23(10):6171-6181. PubMed ID: 33687408 [TBL] [Abstract][Full Text] [Related]
11. Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures. Wu H; Liu X; Zhu K; Huang Y Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111010 [TBL] [Abstract][Full Text] [Related]
12. All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics. Kim J; Rhee D; Song O; Kim M; Kwon YH; Lim DU; Kim IS; Mazánek V; Valdman L; Sofer Z; Cho JH; Kang J Adv Mater; 2022 Mar; 34(12):e2106110. PubMed ID: 34933395 [TBL] [Abstract][Full Text] [Related]
13. Tuning the Carrier Confinement in GeS/Phosphorene van der Waals Heterostructures. Wang C; Peng L; Qian Q; Du J; Wang S; Huang Y Small; 2018 Mar; 14(10):. PubMed ID: 29323456 [TBL] [Abstract][Full Text] [Related]
14. Optically Active MXenes in Van der Waals Heterostructures. Purbayanto MAK; Chandel M; Birowska M; Rosenkranz A; Jastrzębska AM Adv Mater; 2023 Oct; 35(42):e2301850. PubMed ID: 37715336 [TBL] [Abstract][Full Text] [Related]
15. Z-scheme Al Guo S; Cui Z; Zou Y; Sa B Phys Chem Chem Phys; 2024 Feb; 26(6):5368-5376. PubMed ID: 38269434 [TBL] [Abstract][Full Text] [Related]
16. Robust Interlayer Exciton in WS Ma X; Fu S; Ding J; Liu M; Bian A; Hong F; Sun J; Zhang X; Yu X; He D Nano Lett; 2021 Oct; 21(19):8035-8042. PubMed ID: 34605657 [TBL] [Abstract][Full Text] [Related]
17. Intriguing electronic, optical and photocatalytic performance of BSe, M Munawar M; Idrees M; Ahmad I; Din HU; Amin B RSC Adv; 2021 Dec; 12(1):42-52. PubMed ID: 35424496 [TBL] [Abstract][Full Text] [Related]
18. III-VI van der Waals heterostructures for sustainable energy related applications. Chen J; He X; Sa B; Zhou J; Xu C; Wen C; Sun Z Nanoscale; 2019 Mar; 11(13):6431-6444. PubMed ID: 30888370 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Li X; Lin MW; Lin J; Huang B; Puretzky AA; Ma C; Wang K; Zhou W; Pantelides ST; Chi M; Kravchenko I; Fowlkes J; Rouleau CM; Geohegan DB; Xiao K Sci Adv; 2016 Apr; 2(4):e1501882. PubMed ID: 27152356 [TBL] [Abstract][Full Text] [Related]
20. Unveiling the layer-dependent electronic properties in transition-metal dichalcogenide heterostructures assisted by machine learning. Wang T; Tan X; Wei Y; Jin H Nanoscale; 2022 Feb; 14(6):2511-2520. PubMed ID: 35103742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]