These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 35623190)
1. Zwitter-ionic monolith-based spintip column coupled with Evosep One liquid chromatography for high-throughput proteomic analysis. Su Y; Wang X; Yang Y; Yang L; Xu R; Tian R J Chromatogr A; 2022 Jul; 1675():463122. PubMed ID: 35623190 [TBL] [Abstract][Full Text] [Related]
2. [Advances in high-throughput proteomic analysis]. Wu Q; Sui X; Tian R Se Pu; 2021 Feb; 39(2):112-117. PubMed ID: 34227342 [TBL] [Abstract][Full Text] [Related]
3. Evosep One Enables Robust Deep Proteome Coverage Using Tandem Mass Tags while Significantly Reducing Instrument Time. Krieger JR; Wybenga-Groot LE; Tong J; Bache N; Tsao MS; Moran MF J Proteome Res; 2019 May; 18(5):2346-2353. PubMed ID: 30938160 [TBL] [Abstract][Full Text] [Related]
4. Integrated proteomic sample preparation with combination of on-line high-abundance protein depletion, denaturation, reduction, desalting and digestion to achieve high throughput plasma proteome quantification. Li Y; Yuan H; Dai Z; Zhang W; Zhang X; Zhao B; Liang Z; Zhang L; Zhang Y Anal Chim Acta; 2021 Apr; 1154():338343. PubMed ID: 33736814 [TBL] [Abstract][Full Text] [Related]
6. Automation of peptide desalting for proteomic liquid chromatography - tandem mass spectrometry by centrifugal microfluidics. Klatt JN; Dinh TJ; Schilling O; Zengerle R; Schmidt F; Hutzenlaub T; Paust N Lab Chip; 2021 Jun; 21(11):2255-2264. PubMed ID: 33908535 [TBL] [Abstract][Full Text] [Related]
7. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling. Xue L; Lin L; Zhou W; Chen W; Tang J; Sun X; Huang P; Tian R J Chromatogr A; 2018 Aug; 1564():76-84. PubMed ID: 29935814 [TBL] [Abstract][Full Text] [Related]
8. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
9. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput. Macron C; Núñez Galindo A; Cominetti O; Dayon L Methods Mol Biol; 2019; 2044():129-154. PubMed ID: 31432411 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a 'plug and play' nanoflow liquid chromatography system for MS-based proteomic characterization of clinical FFPE specimens. Mitsa G; Richard VR; Majedi Y; Lafleur J; Aguilar-Mahecha A; Basik M; Borchers CH Expert Rev Proteomics; 2023; 20(4-6):87-92. PubMed ID: 37309581 [TBL] [Abstract][Full Text] [Related]
11. AutoProteome Chip System for Fully Automated and Integrated Proteomics Sample Preparation and Peptide Fractionation. Lu X; Wang Z; Gao Y; Chen W; Wang L; Huang P; Gao W; Ke M; He A; Tian R Anal Chem; 2020 Jul; 92(13):8893-8900. PubMed ID: 32490667 [TBL] [Abstract][Full Text] [Related]
12. Vacuum Insulated Probe Heated Electrospray Ionization Source Enhances Microflow Rate Chromatography Signals in the Bruker timsTOF Mass Spectrometer. Midha MK; Kapil C; Maes M; Baxter DH; Morrone SR; Prokop TJ; Moritz RL J Proteome Res; 2023 Jul; 22(7):2525-2537. PubMed ID: 37294184 [TBL] [Abstract][Full Text] [Related]
13. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling. Chen W; Adhikari S; Chen L; Lin L; Li H; Luo S; Yang P; Tian R J Chromatogr A; 2017 May; 1498():207-214. PubMed ID: 28126229 [TBL] [Abstract][Full Text] [Related]
14. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS. Bian Y; Zheng R; Bayer FP; Wong C; Chang YC; Meng C; Zolg DP; Reinecke M; Zecha J; Wiechmann S; Heinzlmeir S; Scherr J; Hemmer B; Baynham M; Gingras AC; Boychenko O; Kuster B Nat Commun; 2020 Jan; 11(1):157. PubMed ID: 31919466 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro. Aballo TJ; Roberts DS; Melby JA; Buck KM; Brown KA; Ge Y J Proteome Res; 2021 Aug; 20(8):4203-4211. PubMed ID: 34236868 [TBL] [Abstract][Full Text] [Related]
16. Label-free quantification and shotgun analysis of complex proteomes by one-dimensional SDS-PAGE/NanoLC-MS: evaluation for the large scale analysis of inflammatory human endothelial cells. Gautier V; Mouton-Barbosa E; Bouyssié D; Delcourt N; Beau M; Girard JP; Cayrol C; Burlet-Schiltz O; Monsarrat B; Gonzalez de Peredo A Mol Cell Proteomics; 2012 Aug; 11(8):527-39. PubMed ID: 22518033 [TBL] [Abstract][Full Text] [Related]
17. Bottom-Up Proteomics: Advancements in Sample Preparation. Duong VA; Lee H Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982423 [TBL] [Abstract][Full Text] [Related]
18. [Recent progress in capillary electrophoresis-based high-sensitivity proteomics]. Yang Y; Tian R Se Pu; 2020 Oct; 38(10):1125-1132. PubMed ID: 34213109 [TBL] [Abstract][Full Text] [Related]
19. A High-Sensitivity Low-Nanoflow LC-MS Configuration for High-Throughput Sample-Limited Proteomics. Zheng R; Matzinger M; Mayer RL; Valenta A; Sun X; Mechtler K Anal Chem; 2023 Dec; 95(51):18673-18678. PubMed ID: 38088903 [TBL] [Abstract][Full Text] [Related]
20. Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling. Chen W; Wang S; Adhikari S; Deng Z; Wang L; Chen L; Ke M; Yang P; Tian R Anal Chem; 2016 May; 88(9):4864-71. PubMed ID: 27062885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]