These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 35623263)
61. Batchwise mesophilic anaerobic co-digestion of secondary sludge from pulp and paper industry and municipal sewage sludge. Hagelqvist A Waste Manag; 2013 Apr; 33(4):820-4. PubMed ID: 23294534 [TBL] [Abstract][Full Text] [Related]
62. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment. Abelleira-Pereira JM; Pérez-Elvira SI; Sánchez-Oneto J; de la Cruz R; Portela JR; Nebot E Water Res; 2015 Mar; 71():330-40. PubMed ID: 25682559 [TBL] [Abstract][Full Text] [Related]
63. Enzymatic pretreatment and anaerobic co-digestion as a new technology to high-methane production. Dos Santos Ferreira J; de Oliveira D; Maldonado RR; Kamimura ES; Furigo A Appl Microbiol Biotechnol; 2020 May; 104(10):4235-4246. PubMed ID: 32200469 [TBL] [Abstract][Full Text] [Related]
64. New insight into thermal hydrolysis of sewage sludge from solubilisation analysis. Ngo PL; Young BR; Brian K; Baroutian S Chemosphere; 2023 Oct; 338():139456. PubMed ID: 37429379 [TBL] [Abstract][Full Text] [Related]
65. Post-treatment of dewatered digested sewage sludge by thermophilic high-solid digestion for pasteurization with positive energy output. Nordell E; Moestedt J; Österman J; Shakeri Yekta S; Björn A; Sun L; Schnürer A Waste Manag; 2021 Jan; 119():11-21. PubMed ID: 33032154 [TBL] [Abstract][Full Text] [Related]
66. Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues. Maragkaki AE; Fountoulakis M; Kyriakou A; Lasaridi K; Manios T Waste Manag; 2018 Jan; 71():605-611. PubMed ID: 28427739 [TBL] [Abstract][Full Text] [Related]
67. Bioelectrochemical enhancement of anaerobic digestion: Comparing single- and two-chamber reactor configurations at thermophilic conditions. Liu SY; Charles W; Ho G; Cord-Ruwisch R; Cheng KY Bioresour Technol; 2017 Dec; 245(Pt A):1168-1175. PubMed ID: 28863995 [TBL] [Abstract][Full Text] [Related]
68. Determination of the dewatered digestate amounts and methane yields from the co-digestion of biowaste as a basis for a cost-benefit analysis. Wehner M; Lichtmannegger T; Robra S; do Carmo Precci Lopes A; Ebner C; Bockreis A Waste Manag; 2021 May; 126():632-642. PubMed ID: 33866139 [TBL] [Abstract][Full Text] [Related]
69. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Olsson J; Feng XM; Ascue J; Gentili FG; Shabiimam MA; Nehrenheim E; Thorin E Bioresour Technol; 2014 Nov; 171():203-10. PubMed ID: 25203227 [TBL] [Abstract][Full Text] [Related]
70. Bottlenecks of anaerobic degradation of proteins in sewage sludge and the potential targeted enhancing strategies. Chen S; Gao J; Dong B Sci Total Environ; 2021 Mar; 759():143573. PubMed ID: 33203563 [TBL] [Abstract][Full Text] [Related]
71. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions. Wang F; Hidaka T; Sakurai K; Tsumori J Bioresour Technol; 2014 Aug; 166():318-25. PubMed ID: 24926605 [TBL] [Abstract][Full Text] [Related]
72. Towards the implementation of hydrothermal carbonization for nutrients, carbon, and energy recovery in centralized biogas plant treating sewage sludge. Hämäläinen A; Kokko M; Tolvanen H; Kinnunen V; Rintala J Waste Manag; 2024 Jan; 173():99-108. PubMed ID: 37984264 [TBL] [Abstract][Full Text] [Related]
73. Thermophilic anaerobic digestion of sewage sludge with high solids content. Wang F; Hidaka T; Uchida T; Tsumori J Water Sci Technol; 2014; 69(9):1949-55. PubMed ID: 24804672 [TBL] [Abstract][Full Text] [Related]
74. Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis. Ruan D; Zhou Z; Pang H; Yao J; Chen G; Qiu Z Bioresour Technol; 2019 Oct; 289():121643. PubMed ID: 31228743 [TBL] [Abstract][Full Text] [Related]
75. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. Choi JM; Han SK; Lee CY Bioresour Technol; 2018 Jul; 259():207-213. PubMed ID: 29554601 [TBL] [Abstract][Full Text] [Related]
76. Anaerobic digestion of sugarcane bagasse for biogas production and digestate valorization. Agarwal NK; Kumar M; Ghosh P; Kumar SS; Singh L; Vijay VK; Kumar V Chemosphere; 2022 May; 295():133893. PubMed ID: 35134407 [TBL] [Abstract][Full Text] [Related]
77. Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge. Scaglia B; D'Imporzano G; Garuti G; Negri M; Adani F Sci Total Environ; 2014 Jan; 466-467():888-97. PubMed ID: 23973551 [TBL] [Abstract][Full Text] [Related]
78. Co-digestion of pig slaughterhouse waste with sewage sludge. Borowski S; Kubacki P Waste Manag; 2015 Jun; 40():119-26. PubMed ID: 25840737 [TBL] [Abstract][Full Text] [Related]
79. Comparative anaerobic digestion of sewage sludge at different temperatures with and without heat pre-treatment. Hidaka T; Nakamura M; Oritate F; Nishimura F Chemosphere; 2022 Nov; 307(Pt 3):135808. PubMed ID: 35932923 [TBL] [Abstract][Full Text] [Related]
80. Novel anaerobic digestion of waste activated sludge via isoelectric-point pretreatment: Ultra-short solids retention time and high methane yield. Xu Y; Liu R; Liu H; Geng H; Dai X Water Res; 2022 Jul; 220():118657. PubMed ID: 35635912 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]