BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35623412)

  • 1. Altered Dynamics of S. aureus Phosphofructokinase via Bond Restraints at Two Distinct Allosteric Binding Sites.
    Celebi M; Akten ED
    J Mol Biol; 2022 Sep; 434(17):167646. PubMed ID: 35623412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunnel-like region observed as a potential allosteric site in Staphylococcus aureus Glyceraldehyde-3-phosphate dehydrogenase.
    Guner-Yılmaz OZ; Kurkcuoglu O; Akten ED
    Arch Biochem Biophys; 2024 Feb; 752():109875. PubMed ID: 38158117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential allosteric sites captured in glycolytic enzymes via residue-based network models: Phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase.
    Celebi M; Inan T; Kurkcuoglu O; Akten ED
    Biophys Chem; 2022 Jan; 280():106701. PubMed ID: 34736071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of allosteric coupling in human β2-adrenergic receptor in the presence of intracellular loop 3.
    Ozgur C; Doruker P; Akten ED
    BMC Struct Biol; 2016 Jul; 16(1):9. PubMed ID: 27368374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for allosteric activation of protease DegS by ligand binding and oligomerization as revealed from molecular dynamics simulations.
    Lu C; Stock G; Knecht V
    Proteins; 2016 Nov; 84(11):1690-1705. PubMed ID: 27556733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative allosteric modulators of cannabinoid receptor 2: protein modeling, binding site identification and molecular dynamics simulations in the presence of an orthosteric agonist.
    Pandey P; Roy KK; Doerksen RJ
    J Biomol Struct Dyn; 2020 Jan; 38(1):32-47. PubMed ID: 30652534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Insights into the Regulation of Staphylococcus aureus Phosphofructokinase by Tetramer-Dimer Conversion.
    Tian T; Wang C; Wu M; Zhang X; Zang J
    Biochemistry; 2018 Jul; 57(29):4252-4262. PubMed ID: 29940104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key Residues in δ Opioid Receptor Allostery Explored by the Elastic Network Model and the Complex Network Model Combined with the Perturbation Method.
    Chen L; Gong W; Han Z; Zhou W; Yang S; Li C
    J Chem Inf Model; 2022 Dec; 62(24):6727-6738. PubMed ID: 36073904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit interactions and composition of the fructose 6-phosphate catalytic site and the fructose 2,6-bisphosphate allosteric site of mammalian phosphofructokinase.
    Ferreras C; Hernández ED; Martínez-Costa OH; Aragón JJ
    J Biol Chem; 2009 Apr; 284(14):9124-31. PubMed ID: 19218242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redefining the role of the quaternary shift in Bacillus stearothermophilus phosphofructokinase.
    Mosser R; Reddy MC; Bruning JB; Sacchettini JC; Reinhart GD
    Biochemistry; 2013 Aug; 52(32):5421-9. PubMed ID: 23859543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinctive communication networks in inactive states of β
    Sogunmez N; Akten ED
    Proteins; 2020 Nov; 88(11):1458-1471. PubMed ID: 32530095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying allosteric regulation in metal sensor proteins using computational methods.
    Chakravorty DK; Merz KM
    Adv Protein Chem Struct Biol; 2014; 96():181-218. PubMed ID: 25443958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an Evolutionarily Conserved Allosteric Network in Steroid Receptors.
    Dube N; Khan SH; Sasse R; Okafor CD
    J Chem Inf Model; 2023 Jan; 63(2):571-582. PubMed ID: 36594606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.
    Verkhivker GM
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):210-225. PubMed ID: 30339916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting Allosteric Networks Using Molecular Dynamics Simulation.
    Bowerman S; Wereszczynski J
    Methods Enzymol; 2016; 578():429-47. PubMed ID: 27497176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of substrate contact residues important for the allosteric regulation of phosphofructokinase from Eschericia coli.
    Fenton AW; Paricharttanakul NM; Reinhart GD
    Biochemistry; 2003 Jun; 42(21):6453-9. PubMed ID: 12767227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of potential allosteric binding sites in cathepsin K based on intramolecular communication.
    Rocha GV; Bastos LS; Costa MGS
    Proteins; 2020 Dec; 88(12):1675-1687. PubMed ID: 32683717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change in allosteric network affects binding affinities of PDZ domains: analysis through perturbation response scanning.
    Gerek ZN; Ozkan SB
    PLoS Comput Biol; 2011 Oct; 7(10):e1002154. PubMed ID: 21998559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of the Staphylococcus aureus YsxC protein: molecular insights into ribosome assembly and allosteric inhibition of the protein.
    Goyal A; Muthu K; Panneerselvam M; Pole AK; Ramadas K
    J Mol Model; 2011 Dec; 17(12):3129-49. PubMed ID: 21360172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singular value decomposition for the correlation of atomic fluctuations with arbitrary angle.
    Yu M; Ma X; Cao H; Chong B; Lai L; Liu Z
    Proteins; 2018 Oct; 86(10):1075-1087. PubMed ID: 30019778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.