BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35623790)

  • 1. Increasing insulin measurement throughput by fluorescence anisotropy imaging immunoassays.
    Wang Y; Adeoye DI; Wang YJ; Roper MG
    Anal Chim Acta; 2022 Jun; 1212():339942. PubMed ID: 35623790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online fluorescence anisotropy immunoassay for monitoring insulin secretion from islets of Langerhans.
    Schrell AM; Mukhitov N; Yi L; Adablah JE; Menezes J; Roper MG
    Anal Methods; 2017 Jan; 9(1):38-45. PubMed ID: 28458724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip.
    Dishinger JF; Reid KR; Kennedy RT
    Anal Chem; 2009 Apr; 81(8):3119-27. PubMed ID: 19364142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells.
    Dishinger JF; Kennedy RT
    Anal Chem; 2007 Feb; 79(3):947-54. PubMed ID: 17263320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of Langerhans on a microfluidic device.
    Lomasney AR; Yi L; Roper MG
    Anal Chem; 2013 Aug; 85(16):7919-25. PubMed ID: 23848226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling Glucose-Stimulated and M3 Receptor-Activated Insulin Secretion Dynamics from Islets of Langerhans Using an Extended-Lifetime Fluorescence Dye.
    Adablah JE; Wang Y; Donohue M; Roper MG
    Anal Chem; 2020 Jun; 92(12):8464-8471. PubMed ID: 32429660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing.
    Glieberman AL; Pope BD; Zimmerman JF; Liu Q; Ferrier JP; Kenty JHR; Schrell AM; Mukhitov N; Shores KL; Tepole AB; Melton DA; Roper MG; Parker KK
    Lab Chip; 2019 Sep; 19(18):2993-3010. PubMed ID: 31464325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated perfusion and separation systems for entrainment of insulin secretion from islets of Langerhans.
    Yi L; Wang X; Dhumpa R; Schrell AM; Mukhitov N; Roper MG
    Lab Chip; 2015 Feb; 15(3):823-32. PubMed ID: 25474044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line competitive immunoassay based on capillary electrophoresis applied to monitoring insulin secretion from single islets of Langerhans.
    Tao L; Aspinwall CA; Kennedy RT
    Electrophoresis; 1998 Mar; 19(3):403-8. PubMed ID: 9551792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin C-peptide secretion on-a-chip to measure the dynamics of secretion and metabolism from individual islets.
    Wang Y; Regeenes R; Memon M; Rocheleau JV
    Cell Rep Methods; 2023 Oct; 3(10):100602. PubMed ID: 37820726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay.
    Roper MG; Shackman JG; Dahlgren GM; Kennedy RT
    Anal Chem; 2003 Sep; 75(18):4711-7. PubMed ID: 14674445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Device for the Measurement of Amino Acid Secretion Dynamics from Murine and Human Islets of Langerhans.
    Wang X; Yi L; Roper MG
    Anal Chem; 2016 Mar; 88(6):3369-75. PubMed ID: 26891222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic system for monitoring glucagon secretion from human pancreatic islets of Langerhans.
    Eaton WJ; Roper MG
    Anal Methods; 2021 Aug; 13(32):3614-3619. PubMed ID: 34308945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-color electrophoretic immunoassay for simultaneous measurement of insulin and glucagon content in islets of Langerhans.
    Guillo C; Roper MG
    Electrophoresis; 2008 Jan; 29(2):410-6. PubMed ID: 18080249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous capillary electrophoresis competitive immunoassay for insulin, glucagon, and islet amyloid polypeptide secretion from mouse islets of Langerhans.
    Guillo C; Truong TM; Roper MG
    J Chromatogr A; 2011 Jul; 1218(26):4059-64. PubMed ID: 21620410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic-enabled quantitative measurements of insulin release dynamics from single islets of Langerhans in response to 5-palmitic acid hydroxy stearic acid.
    Bandak B; Yi L; Roper MG
    Lab Chip; 2018 Sep; 18(18):2873-2882. PubMed ID: 30109329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated cellular stimulation with integrated pneumatic valves and fluidic capacitors.
    Adeoye DI; Wang Y; Davis JJ; Roper MG
    Analyst; 2023 Mar; 148(6):1227-1234. PubMed ID: 36786685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics.
    Li X; Hu J; Easley CJ
    Lab Chip; 2018 Sep; 18(19):2926-2935. PubMed ID: 30112543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Chip with Integrated Electrophoretic Immunoassay for Investigating Cell-Cell Interactions.
    Lu S; Dugan CE; Kennedy RT
    Anal Chem; 2018 Apr; 90(8):5171-5178. PubMed ID: 29578696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smartphone-microfluidic fluorescence imaging system for studying islet physiology.
    Yu X; Xing Y; Zhang Y; Zhang P; He Y; Ghamsari F; Ramasubramanian MK; Wang Y; Ai H; Oberholzer J
    Front Endocrinol (Lausanne); 2022; 13():1039912. PubMed ID: 36440196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.