BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35624031)

  • 1. Reductive biomining of pyrite by methanogens.
    Spietz RL; Payne D; Szilagyi R; Boyd ES
    Trends Microbiol; 2022 Nov; 30(11):1072-1083. PubMed ID: 35624031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating Abiotic and Biotic Mechanisms of Pyrite Reduction.
    Spietz RL; Payne D; Kulkarni G; Metcalf WW; Roden EE; Boyd ES
    Front Microbiol; 2022; 13():878387. PubMed ID: 35615515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining Pathways of Iron and Sulfur Acquisition, Trafficking, Deployment, and Storage in Mineral-Grown Methanogen Cells.
    Payne D; Shepard EM; Spietz RL; Steward K; Brumfield S; Young M; Bothner B; Broderick WE; Broderick JB; Boyd ES
    J Bacteriol; 2021 Sep; 203(19):e0014621. PubMed ID: 34251867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive dissolution of pyrite by methanogenic archaea.
    Payne D; Spietz RL; Boyd ES
    ISME J; 2021 Dec; 15(12):3498-3507. PubMed ID: 34112969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methanogens acquire and bioaccumulate nickel during reductive dissolution of nickelian pyrite.
    Spietz RL; Payne D; Boyd ES
    Appl Environ Microbiol; 2023 Oct; 89(10):e0099123. PubMed ID: 37830848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A shift between mineral and nonmineral sources of iron and sulfur causes proteome-wide changes in
    Fausset H; Spietz RL; Cox S; Cooper G; Spurzem S; Tokmina-Lukaszewska M; DuBois J; Broderick JB; Shepard EM; Boyd ES; Bothner B
    Microbiol Spectr; 2024 Feb; 12(2):e0041823. PubMed ID: 38179920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic Analysis of Methanococcus voltae Grown in the Presence of Mineral and Nonmineral Sources of Iron and Sulfur.
    Steward KF; Payne D; Kincannon W; Johnson C; Lensing M; Fausset H; Németh B; Shepard EM; Broderick WE; Broderick JB; Dubois J; Bothner B
    Microbiol Spectr; 2022 Aug; 10(4):e0189322. PubMed ID: 35876569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation.
    Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L
    J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic study for stibnite oxidative dissolution and sequestration on pyrite.
    Yan L; Chan T; Jing C
    Environ Pollut; 2020 Jul; 262():114309. PubMed ID: 32155558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants.
    Elsner M; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2004 Feb; 38(3):799-807. PubMed ID: 14968867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved extraction of acid-insoluble monosulfide minerals by stannous chloride reduction and its application to the separation of mono- and disulfide minerals in the presence of ferric iron.
    Ye H; Gao K; Lu G; Xie Y; Reinfelder JR; Huang W; Tao X; Yi X; Dang Z
    Sci Total Environ; 2021 Sep; 785():147367. PubMed ID: 33940422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment.
    Hu Y; Wu G; Li R; Xiao L; Zhan X
    Water Res; 2020 Jul; 179():115914. PubMed ID: 32413614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions.
    Liu L; Guo D; Qiu G; Liu C; Ning Z
    J Environ Manage; 2022 Sep; 317():115425. PubMed ID: 35751250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alumina inhibits pyrite oxidative dissolution by regulating solid film passivation layer and S, Fe, and Al speciation transformation.
    Liu G; Tang J; Li B; Chen C; Wang X
    Chemosphere; 2024 Mar; 352():141366. PubMed ID: 38311037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hyperthermophilic archaeon Pyrococcus furiosus utilizes environmental iron sulfide cluster complexes as an iron source.
    Clarkson SM; Haja DK; Adams MWW
    Extremophiles; 2021 May; 25(3):249-256. PubMed ID: 33779854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic Neutrophilic Pyrite Oxidation by a Chemolithoautotrophic Nitrate-Reducing Iron(II)-Oxidizing Culture Enriched from a Fractured Aquifer.
    Jakus N; Mellage A; Höschen C; Maisch M; Byrne JM; Mueller CW; Grathwohl P; Kappler A
    Environ Sci Technol; 2021 Jul; 55(14):9876-9884. PubMed ID: 34247483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of molecular cluster models to probe pyrite surface reactivity.
    Kour M; Taborosi A; Boyd ES; Szilagyi RK
    J Comput Chem; 2023 Dec; 44(32):2486-2500. PubMed ID: 37650712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of ball-miling on pyrite/zero-valent iron for arsenic removal in water: A mechanistic study.
    Du M; Zhang Y; Zeng X; Kuang H; Huang S
    Chemosphere; 2020 Jun; 249():126130. PubMed ID: 32058134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.
    Finck N; Dardenne K
    J Contam Hydrol; 2016 May; 188():44-51. PubMed ID: 27010738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
    Percak-Dennett E; He S; Converse B; Konishi H; Xu H; Corcoran A; Noguera D; Chan C; Bhattacharyya A; Borch T; Boyd E; Roden EE
    Geobiology; 2017 Sep; 15(5):690-703. PubMed ID: 28452176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.