These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35624178)

  • 1. Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints.
    Li F; Chen Y; Qi Q; Wang Y; Yuan L; Huang M; Elsemman IE; Feizi A; Kerkhoven EJ; Nielsen J
    Nat Commun; 2022 May; 13(1):2969. PubMed ID: 35624178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale modeling of yeast metabolism: retrospectives and perspectives.
    Chen Y; Li F; Nielsen J
    FEMS Yeast Res; 2022 Feb; 22(1):. PubMed ID: 35094064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the protein secretory pathway of
    Huang M; Wang G; Qin J; Petranovic D; Nielsen J
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):E11025-E11032. PubMed ID: 30397111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved production of a heterologous amylase in Saccharomyces cerevisiae by inverse metabolic engineering.
    Liu Z; Liu L; Österlund T; Hou J; Huang M; Fagerberg L; Petranovic D; Uhlén M; Nielsen J
    Appl Environ Microbiol; 2014 Sep; 80(17):5542-50. PubMed ID: 24973076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins.
    Thak EJ; Yoo SJ; Moon HY; Kang HA
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 32009173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressors of amyloid-β toxicity improve recombinant protein production in yeast by reducing oxidative stress and tuning cellular metabolism.
    Chen X; Li X; Ji B; Wang Y; Ishchuk OP; Vorontsov E; Petranovic D; Siewers V; Engqvist MKM
    Metab Eng; 2022 Jul; 72():311-324. PubMed ID: 35508267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different Routes of Protein Folding Contribute to Improved Protein Production in Saccharomyces cerevisiae.
    Qi Q; Li F; Yu R; Engqvist MKM; Siewers V; Fuchs J; Nielsen J
    mBio; 2020 Nov; 11(6):. PubMed ID: 33173005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae.
    Hou J; Tyo KE; Liu Z; Petranovic D; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):491-510. PubMed ID: 22533807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moderate Expression of
    Bao J; Huang M; Petranovic D; Nielsen J
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28476767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production.
    Wang G; Huang M; Nielsen J
    Curr Opin Biotechnol; 2017 Dec; 48():77-84. PubMed ID: 28410475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast synthetic biology for the production of recombinant therapeutic proteins.
    Kim H; Yoo SJ; Kang HA
    FEMS Yeast Res; 2015 Feb; 15(1):1-16. PubMed ID: 25130199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae.
    Hou J; Tyo K; Liu Z; Petranovic D; Nielsen J
    Metab Eng; 2012 Mar; 14(2):120-7. PubMed ID: 22265825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast.
    Huang M; Bai Y; Sjostrom SL; Hallström BM; Liu Z; Petranovic D; Uhlén M; Joensson HN; Andersson-Svahn H; Nielsen J
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):E4689-96. PubMed ID: 26261321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of biopharmaceutical proteins by yeast: advances through metabolic engineering.
    Nielsen J
    Bioengineered; 2013; 4(4):207-11. PubMed ID: 23147168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing the yeast Saccharomyces cerevisiae for the production of fungal secondary metabolites.
    Wang G; Kell DB; Borodina I
    Essays Biochem; 2021 Jul; 65(2):277-291. PubMed ID: 34061167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular tools for pathway engineering in Saccharomyces cerevisiae.
    Besada-Lombana PB; McTaggart TL; Da Silva NA
    Curr Opin Biotechnol; 2018 Oct; 53():39-49. PubMed ID: 29274630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Glycosylation deficiency enhanced heterologous production of a Bacillus licheniformis thermostable α-amylase in Saccharomyces cerevisiae.
    Hoshida H; Fujita T; Cha-aim K; Akada R
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5473-82. PubMed ID: 23306636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.