These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35624178)

  • 21. Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in Saccharomyces cerevisiae.
    Liu L; Zhang Y; Liu Z; Petranovic D; Nielsen J
    FEMS Yeast Res; 2015 Nov; 15(7):. PubMed ID: 26220688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving the Production of Cofactor-Containing Proteins: Production of Human Hemoglobin in Yeast.
    Ishchuk OP; Martínez JL; Petranovic D
    Methods Mol Biol; 2019; 1923():243-264. PubMed ID: 30737744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of protein secretion in yeast: strategies and impact on protein production.
    Idiris A; Tohda H; Kumagai H; Takegawa K
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):403-17. PubMed ID: 20140428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P; Shahpiri A; Asadollahi MA; Momenbeik F; Partow S
    Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model-guided identification of gene deletion targets for metabolic engineering in Saccharomyces cerevisiae.
    Brochado AR; Patil KR
    Methods Mol Biol; 2014; 1152():281-94. PubMed ID: 24744040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production].
    Yang F; Cao M; Jin Y; Yang X; Tian S
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications.
    Lian J; Mishra S; Zhao H
    Metab Eng; 2018 Nov; 50():85-108. PubMed ID: 29702275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering.
    Dong C; Schultz JC; Liu W; Lian J; Huang L; Xu Z; Zhao H
    Metab Eng; 2021 Jul; 66():319-327. PubMed ID: 33713797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular engineering of insulin for recombinant expression in yeast.
    Kjeldsen T; Andersen AS; Hubálek F; Johansson E; Kreiner FF; Schluckebier G; Kurtzhals P
    Trends Biotechnol; 2024 Apr; 42(4):464-478. PubMed ID: 37880066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recombinant protein production in yeasts.
    Mattanovich D; Branduardi P; Dato L; Gasser B; Sauer M; Porro D
    Methods Mol Biol; 2012; 824():329-58. PubMed ID: 22160907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up.
    Madhavan A; Arun KB; Sindhu R; Krishnamoorthy J; Reshmy R; Sirohi R; Pugazhendi A; Awasthi MK; Szakacs G; Binod P
    Microb Cell Fact; 2021 Jun; 20(1):124. PubMed ID: 34193127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-scale metabolic model-based engineering of Escherichia coli enhances recombinant single-chain antibody fragment production.
    Behravan A; Hashemi A; Marashi SA; Fouladiha H
    Biotechnol Lett; 2022 Oct; 44(10):1231-1242. PubMed ID: 36074282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 36. Long-chain alkane production by the yeast Saccharomyces cerevisiae.
    Buijs NA; Zhou YJ; Siewers V; Nielsen J
    Biotechnol Bioeng; 2015 Jun; 112(6):1275-9. PubMed ID: 25545362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards systems metabolic engineering in Pichia pastoris.
    Schwarzhans JP; Luttermann T; Geier M; Kalinowski J; Friehs K
    Biotechnol Adv; 2017 Nov; 35(6):681-710. PubMed ID: 28760369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico target-based strain engineering of Saccharomyces cerevisiae for terpene precursor improvement.
    Paramasivan K; Abdulla A; Gupta N; Mutturi S
    Integr Biol (Camb); 2022 Apr; 14(2):25-36. PubMed ID: 35368081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-scale modeling of the protein secretory machinery in yeast.
    Feizi A; Österlund T; Petranovic D; Bordel S; Nielsen J
    PLoS One; 2013; 8(5):e63284. PubMed ID: 23667601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Population FBA predicts metabolic phenotypes in yeast.
    Labhsetwar P; Melo MCR; Cole JA; Luthey-Schulten Z
    PLoS Comput Biol; 2017 Sep; 13(9):e1005728. PubMed ID: 28886026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.