These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35624444)

  • 1. The effect of talus osteochondral defects of different area size on ankle joint stability: a finite element analysis.
    Li J; Wang Y; Wei Y; Kong D; Lin Y; Wang D; Cheng S; Yin P; Wei M
    BMC Musculoskelet Disord; 2022 May; 23(1):500. PubMed ID: 35624444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite Element Analysis of the Effect of Talar Osteochondral Defects of Different Depths on Ankle Joint Stability.
    Li J; Wei Y; Wei M
    Med Sci Monit; 2020 Aug; 26():e921823. PubMed ID: 32820745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Biomechanical Influence of Defected Cartilage on the Progression of Osteochondral Lesions of the Talus: A Three-dimensional Finite Element Analysis.
    Ruan Y; Du Y; Jiang Z; Qian Z; Chang F
    Orthop Surg; 2023 Jun; 15(6):1685-1693. PubMed ID: 37199080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteochondral lesions of the talus: effect of defect size and plantarflexion angle on ankle joint stresses.
    Hunt KJ; Lee AT; Lindsey DP; Slikker W; Chou LB
    Am J Sports Med; 2012 Apr; 40(4):895-901. PubMed ID: 22366518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteochondral autograft transplantation with biplanar distal tibial osteotomy for patients with concomitant large osteochondral lesion of the talus and varus ankle malalignment.
    Li X; Zhu Y; Xu Y; Wang B; Liu J; Xu X
    BMC Musculoskelet Disord; 2017 Jan; 18(1):23. PubMed ID: 28103870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis.
    Kılıçaslan ÖF; Levent A; Çelik HK; Tokgöz MA; Köse Ö; Rennie AEW
    Jt Dis Relat Surg; 2021; 32(2):355-362. PubMed ID: 34145811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surgical Treatment for Osteochondral Lesions of the Talus.
    Powers RT; Dowd TC; Giza E
    Arthroscopy; 2021 Dec; 37(12):3393-3396. PubMed ID: 34863377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Percutaneous osteoplasty for the treatment of a painful osteochondral lesion of the talus: a case report and literature review.
    Seo SS; Park JY; Kim HJ; Yoon JW; Park SH; Kim KH
    Pain Physician; 2012; 15(5):E743-8. PubMed ID: 22996869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arthroscopic one-step matrix-assisted bone marrow stimulation for the treatment of osteochondral defects of the talus.
    Geyer S; Mattes J; Petersen W; Imhoff AB; Achtnich AE
    Oper Orthop Traumatol; 2022 Aug; 34(4):295-302. PubMed ID: 34609575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect analysis of iliac bone autografting for Hepple V osteochondral lesions of the talus.
    Wang X; Zhang D; Zhang F; Jin L; Shi D; Hou Z
    J Orthop Surg Res; 2022 Jan; 17(1):33. PubMed ID: 35033144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Establishment of a three-dimensional finite element model and stress analysis of the talus during normal gait].
    Lu CH; Yu B; Chen HQ; Lin QR
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Oct; 30(10):2273-6. PubMed ID: 20965823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in joint morphology between the knee and ankle affect the repair of osteochondral defects in a rabbit model.
    Makitsubo M; Adachi N; Nakasa T; Kato T; Shimizu R; Ochi M
    J Orthop Surg Res; 2016 Oct; 11(1):110. PubMed ID: 27716360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mosaicplasty of the talus: a joint contact analysis in a cadaver model.
    Choung D; Christensen JC
    J Foot Ankle Surg; 2002; 41(2):65-75. PubMed ID: 11995838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Fluid Dynamics in Distributing Ankle Stresses in Anatomic and Injured States.
    Hamid KS; Scott AT; Nwachukwu BU; Danelson KA
    Foot Ankle Int; 2016 Dec; 37(12):1343-1349. PubMed ID: 27530984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autologous osteochondral transplantation of the talus partially restores contact mechanics of the ankle joint.
    Fansa AM; Murawski CD; Imhauser CW; Nguyen JT; Kennedy JG
    Am J Sports Med; 2011 Nov; 39(11):2457-65. PubMed ID: 21868691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteochondral Lesions of the Talus: An Individualized Treatment Paradigm from the Amsterdam Perspective.
    Rikken QGH; Kerkhoffs GMMJ
    Foot Ankle Clin; 2021 Mar; 26(1):121-136. PubMed ID: 33487235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of factors related to the occurrence of osteochondral lesions of the talus by 3D bone morphology of the ankle.
    Teramoto A; Shoji H; Kura H; Sakakibara Y; Kamiya T; Watanabe K; Yamashita T
    Bone Joint J; 2018 Nov; 100-B(11):1487-1490. PubMed ID: 30418063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of osteochondral lesion size and ankle joint position on cartilage behavior - numerical and in vitro experimental results.
    Ramos A; Rocha C; Mesnard M
    Med Eng Phys; 2021 Dec; 98():73-82. PubMed ID: 34848041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Management of Treatment Failures in Osteochondral Lesions of the Talus.
    Hunt KJ; Ebben BJ
    Foot Ankle Clin; 2022 Jun; 27(2):385-399. PubMed ID: 35680295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preliminary finite element analysis of anterior inferior tibiofibular syndesmosis injuries treated with screw and tight-rope fixation].
    Liu ZX; Wang W; Zhang X; Yang J
    Zhongguo Gu Shang; 2018 Oct; 31(10):937-943. PubMed ID: 30373348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.