These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35624544)

  • 1. Automated Detection of Brain Metastases on T1-Weighted MRI Using a Convolutional Neural Network: Impact of Volume Aware Loss and Sampling Strategy.
    Chartrand G; Emiliani RD; Pawlowski SA; Markel DA; Bahig H; Cengarle-Samak A; Rajakesari S; Lavoie J; Ducharme S; Roberge D
    J Magn Reson Imaging; 2022 Dec; 56(6):1885-1898. PubMed ID: 35624544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradual Self-Training via Confidence and Volume Based Domain Adaptation for Multi Dataset Deep Learning-Based Brain Metastases Detection Using Nonlocal Networks on MRI Images.
    Liew A; Lee CC; Subramaniam V; Lan BL; Tan M
    J Magn Reson Imaging; 2023 Jun; 57(6):1728-1740. PubMed ID: 36208095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
    Jünger ST; Hoyer UCI; Schaufler D; Laukamp KR; Goertz L; Thiele F; Grunz JP; Schlamann M; Perkuhn M; Kabbasch C; Persigehl T; Grau S; Borggrefe J; Scheffler M; Shahzad R; Pennig L
    J Magn Reson Imaging; 2021 Nov; 54(5):1608-1622. PubMed ID: 34032344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data.
    Bousabarah K; Ruge M; Brand JS; Hoevels M; Rueß D; Borggrefe J; Große Hokamp N; Visser-Vandewalle V; Maintz D; Treuer H; Kocher M
    Radiat Oncol; 2020 Apr; 15(1):87. PubMed ID: 32312276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
    Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G
    J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Brain Metastases Detection Framework for T1-Weighted Contrast-Enhanced 3D MRI.
    Dikici E; Ryu JL; Demirer M; Bigelow M; White RD; Slone W; Erdal BS; Prevedello LM
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2883-2893. PubMed ID: 32203040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks.
    Said D; Carbonell G; Stocker D; Hectors S; Vietti-Violi N; Bane O; Chin X; Schwartz M; Tabrizian P; Lewis S; Greenspan H; Jégou S; Schiratti JB; Jehanno P; Taouli B
    Eur Radiol; 2023 Sep; 33(9):6020-6032. PubMed ID: 37071167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and evaluation of a gated high-resolution neural network for automatic brain metastasis detection and segmentation.
    Qu J; Zhang W; Shu X; Wang Y; Wang L; Xu M; Yao L; Hu N; Tang B; Zhang L; Lui S
    Eur Radiol; 2023 Oct; 33(10):6648-6658. PubMed ID: 37186214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.
    Kang H; Witanto JN; Pratama K; Lee D; Choi KS; Choi SH; Kim KM; Kim MS; Kim JW; Kim YH; Park SJ; Park CK
    J Magn Reson Imaging; 2023 Mar; 57(3):871-881. PubMed ID: 35775971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for brain metastasis detection and segmentation in longitudinal MRI data.
    Huang Y; Bert C; Sommer P; Frey B; Gaipl U; Distel LV; Weissmann T; Uder M; Schmidt MA; Dörfler A; Maier A; Fietkau R; Putz F
    Med Phys; 2022 Sep; 49(9):5773-5786. PubMed ID: 35833351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images.
    Hsu DG; Ballangrud Å; Shamseddine A; Deasy JO; Veeraraghavan H; Cervino L; Beal K; Aristophanous M
    Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34315148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmented networks for faster brain metastases detection in T1-weighted contrast-enhanced 3D MRI.
    Dikici E; Nguyen XV; Bigelow M; Prevedello LM
    Comput Med Imaging Graph; 2022 Jun; 98():102059. PubMed ID: 35395606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended nnU-Net for Brain Metastasis Detection and Segmentation in Contrast-Enhanced Magnetic Resonance Imaging With a Large Multi-Institutional Data Set.
    Yoo Y; Gibson E; Zhao G; Re TJ; Parmar H; Das J; Wang H; Kim MM; Shen C; Lee Y; Kondziolka D; Ibrahim M; Lian J; Jain R; Zhu T; Comaniciu D; Balter JM; Cao Y
    Int J Radiat Oncol Biol Phys; 2025 Jan; 121(1):241-249. PubMed ID: 39059508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation.
    Park GE; Kim SH; Nam Y; Kang J; Park M; Kang BJ
    J Magn Reson Imaging; 2024 Jun; 59(6):2252-2262. PubMed ID: 37596823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Automatic Detection of Brain Metastases in Heterogenous Multi-Institutional Magnetic Resonance Imaging Sets: An Exploratory Analysis of NRG-CC001.
    Liang Y; Lee K; Bovi JA; Palmer JD; Brown PD; Gondi V; Tomé WA; Benzinger TLS; Mehta MP; Li XA
    Int J Radiat Oncol Biol Phys; 2022 Nov; 114(3):529-536. PubMed ID: 35787927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic detection and segmentation of multiple brain metastases on magnetic resonance image using asymmetric UNet architecture.
    Cao Y; Vassantachart A; Ye JC; Yu C; Ruan D; Sheng K; Lao Y; Shen ZL; Balik S; Bian S; Zada G; Shiu A; Chang EL; Yang W
    Phys Med Biol; 2021 Jan; 66(1):015003. PubMed ID: 33186927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases.
    Li R; Guo Y; Zhao Z; Chen M; Liu X; Gong G; Wang L
    Eur Radiol; 2023 May; 33(5):3521-3531. PubMed ID: 36695903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-Learning-Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size.
    Narayana PA; Coronado I; Sujit SJ; Wolinsky JS; Lublin FD; Gabr RE
    J Magn Reson Imaging; 2020 May; 51(5):1487-1496. PubMed ID: 31625650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi-Site, Multi-Vendor, and Multi-Label Dense U-Net.
    Fujiwara T; Berhane H; Scott MB; Englund EK; Schäfer M; Fonseca B; Berthusen A; Robinson JD; Rigsby CK; Browne LP; Markl M; Barker AJ
    J Magn Reson Imaging; 2022 Jun; 55(6):1666-1680. PubMed ID: 34792835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.