These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 35624651)
21. Multiscale cytometry and regulation of 3D cell cultures on a chip. Sart S; Tomasi RF; Amselem G; Baroud CN Nat Commun; 2017 Sep; 8(1):469. PubMed ID: 28883466 [TBL] [Abstract][Full Text] [Related]
22. Multilayer architecture microfluidic network array for combinatorial drug testing on 3D-cultured cells. Chang HC; Lin CH; Juang D; Wu HW; Lee CY; Chen C; Hsu CH Biofabrication; 2019 Jun; 11(3):035024. PubMed ID: 31051482 [TBL] [Abstract][Full Text] [Related]
23. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Li XJ; Valadez AV; Zuo P; Nie Z Bioanalysis; 2012 Jun; 4(12):1509-25. PubMed ID: 22793034 [TBL] [Abstract][Full Text] [Related]
24. Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model. Dhiman N; Shagaghi N; Bhave M; Sumer H; Kingshott P; Rath SN Cytotherapy; 2021 Jan; 23(1):25-36. PubMed ID: 32771259 [TBL] [Abstract][Full Text] [Related]
25. Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics. Langer K; Joensson HN SLAS Technol; 2020 Apr; 25(2):111-122. PubMed ID: 31561747 [TBL] [Abstract][Full Text] [Related]
26. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics. Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003 [TBL] [Abstract][Full Text] [Related]
27. Exceeding 80% Efficiency of Single-Bead Encapsulation in Microdroplets through Hydrogel Coating-Assisted Close-Packed Ordering. Chen L; Zhao Y; Li J; Xiong C; Xu Y; Tang C; Zhang R; Zhang J; Mi X; Liu Y Anal Chem; 2023 Jun; 95(23):8889-8897. PubMed ID: 37233805 [TBL] [Abstract][Full Text] [Related]
28. Droplet microfluidics-based biomedical microcarriers. Shao C; Chi J; Shang L; Fan Q; Ye F Acta Biomater; 2022 Jan; 138():21-33. PubMed ID: 34718181 [TBL] [Abstract][Full Text] [Related]
29. Live Imaging of 3D Hanging Drop Arrays through Manipulation of Light-Responsive Pyroelectric Slippery Surface and Chip Adhesion. Zhou S; Yang J; Li R; Chen Y; Li C; Chen C; Tao Y; Fan S; Wu D; Wen L; Qiu B; Ding W Nano Lett; 2023 Dec; 23(23):10710-10718. PubMed ID: 38010943 [TBL] [Abstract][Full Text] [Related]
30. Advances of 3D Cell Co-Culture Technology Based on Microfluidic Chips. Li C; He W; Song Y; Zhang X; Sun J; Zhou Z Biosensors (Basel); 2024 Jul; 14(7):. PubMed ID: 39056612 [TBL] [Abstract][Full Text] [Related]
31. Engineering and Characterization of a Biomimetic Microchip for Differentiating Mouse Adipocytes in a 3D Microenvironment. Chen YT; Ramalingam L; Garcia CR; Ding Z; Wu J; Moustaid-Moussa N; Li W Pharm Res; 2022 Feb; 39(2):329-340. PubMed ID: 35166994 [TBL] [Abstract][Full Text] [Related]
32. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Barata D; van Blitterswijk C; Habibovic P Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719 [TBL] [Abstract][Full Text] [Related]
33. The XTT cell proliferation assay applied to cell layers embedded in three-dimensional matrix. Huyck L; Ampe C; Van Troys M Assay Drug Dev Technol; 2012 Aug; 10(4):382-92. PubMed ID: 22574651 [TBL] [Abstract][Full Text] [Related]
34. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667 [TBL] [Abstract][Full Text] [Related]
35. Three-Dimensional Printing Enabled Droplet Microfluidic Device for Real-Time Monitoring of Single-Cell Viability and Blebbing Activity. Lin M; Liu T; Liu Y; Lin Z; Chen J; Song J; Qiu Y; Zhou B Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630057 [TBL] [Abstract][Full Text] [Related]
36. Individual Control and Quantification of 3D Spheroids in a High-Density Microfluidic Droplet Array. Tomasi RF; Sart S; Champetier T; Baroud CN Cell Rep; 2020 May; 31(8):107670. PubMed ID: 32460010 [TBL] [Abstract][Full Text] [Related]
37. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118 [TBL] [Abstract][Full Text] [Related]
38. A droplet-to-digital (D2D) microfluidic device for single cell assays. Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549 [TBL] [Abstract][Full Text] [Related]
39. Fabrication of a Low-Cost Microfluidic Device for High-Throughput Drug Testing on Static and Dynamic Cancer Spheroid Culture Models. Do TD; Pham UT; Nguyen LP; Nguyen TM; Bui CN; Oliver S; Pham P; Tran TQ; Hoang BT; Pham MTH; Pham DTN; Nguyen DT Diagnostics (Basel); 2023 Apr; 13(8):. PubMed ID: 37189495 [TBL] [Abstract][Full Text] [Related]
40. Scalable Production of Biomedical Microparticles via High-Throughput Microfluidic Step Emulsification. Zheng Y; Chen H; Lin X; Li M; Zhao Y; Shang L Small; 2023 Apr; 19(17):e2206007. PubMed ID: 36725312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]