BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35624766)

  • 1. The ArsH Protein Product of the
    Sedláček V; Kryl M; Kučera I
    Antioxidants (Basel); 2022 May; 11(5):. PubMed ID: 35624766
    [No Abstract]   [Full Text] [Related]  

  • 2. ArsH from the cyanobacterium Synechocystis sp. PCC 6803 is an efficient NADPH-dependent quinone reductase.
    Hervás M; López-Maury L; León P; Sánchez-Riego AM; Florencio FJ; Navarro JA
    Biochemistry; 2012 Feb; 51(6):1178-87. PubMed ID: 22304305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic.
    Páez-Espino AD; Nikel PI; Chavarría M; de Lorenzo V
    Environ Microbiol; 2020 Jun; 22(6):2230-2242. PubMed ID: 32202357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone.
    Chen J; Bhattacharjee H; Rosen BP
    Mol Microbiol; 2015 Jun; 96(5):1042-52. PubMed ID: 25732202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical properties and crystal structure of the flavin reductase FerA from Paracoccus denitrificans.
    Sedláček V; Klumpler T; Marek J; Kučera I
    Microbiol Res; 2016; 188-189():9-22. PubMed ID: 27296958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification, crystallization and preliminary X-ray diffraction analysis of ArsH from Synechocystis sp. strain PCC 6803.
    Zhang X; Xue XM; Yan Y; Ye J
    Acta Crystallogr F Struct Biol Commun; 2014 Apr; 70(Pt 4):497-500. PubMed ID: 24699748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans.
    Sedláček V; Klumpler T; Marek J; Kučera I
    PLoS One; 2014; 9(5):e96262. PubMed ID: 24817153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity.
    Vorontsov II; Minasov G; Brunzelle JS; Shuvalova L; Kiryukhina O; Collart FR; Anderson WF
    Protein Sci; 2007 Nov; 16(11):2483-90. PubMed ID: 17962405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferric reductase activity of the ArsH protein from Acidithiobacillus ferrooxidans.
    Mo H; Chen Q; Du J; Tang L; Qin F; Miao B; Wu X; Zeng J
    J Microbiol Biotechnol; 2011 May; 21(5):464-9. PubMed ID: 21617342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater.
    Chang JS; Yoon IH; Kim KW
    Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of Escherichia coli SsuE: defining a general catalytic cycle for FMN reductases of the flavodoxin-like superfamily.
    Driggers CM; Dayal PV; Ellis HR; Karplus PA
    Biochemistry; 2014 Jun; 53(21):3509-19. PubMed ID: 24816272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans.
    Sedláček V; Kučera I
    Mol Microbiol; 2019 Jul; 112(1):166-183. PubMed ID: 30977245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, biochemical and kinetic properties of recombinant Pst2p from Saccharomyces cerevisiae, a FMN-dependent NAD(P)H:quinone oxidoreductase.
    Koch K; Hromic A; Sorokina M; Strandback E; Reisinger M; Gruber K; Macheroux P
    Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1046-1056. PubMed ID: 28499769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of arsenic-thiol interactions in metalloregulation of the ars operon.
    Shi W; Dong J; Scott RA; Ksenzenko MY; Rosen BP
    J Biol Chem; 1996 Apr; 271(16):9291-7. PubMed ID: 8621591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Two Highly Arsenic-Resistant Caulobacteraceae Strains of
    Yang X; Li Y; Feng R; Chen J; Alwathnani HA; Xu W; Rensing C
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the ars gene cluster from highly arsenic-resistant Burkholderia xenovorans LB400.
    Serrato-Gamiño N; Salgado-Lora MG; Chávez-Moctezuma MP; Campos-García J; Cervantes C
    World J Microbiol Biotechnol; 2018 Sep; 34(10):142. PubMed ID: 30203106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti.
    Ye J; Yang HC; Rosen BP; Bhattacharjee H
    FEBS Lett; 2007 Aug; 581(21):3996-4000. PubMed ID: 17673204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T.
    Branco R; Chung AP; Morais PV
    BMC Microbiol; 2008 Jun; 8():95. PubMed ID: 18554386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.