These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35624922)
1. Transfer Learning-Based Model for Diabetic Retinopathy Diagnosis Using Retinal Images. Jabbar MK; Yan J; Xu H; Ur Rehman Z; Jabbar A Brain Sci; 2022 Apr; 12(5):. PubMed ID: 35624922 [TBL] [Abstract][Full Text] [Related]
2. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
3. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning. Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377 [TBL] [Abstract][Full Text] [Related]
4. Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features. Butt MM; Iskandar DNFA; Abdelhamid SE; Latif G; Alghazo R Diagnostics (Basel); 2022 Jul; 12(7):. PubMed ID: 35885512 [TBL] [Abstract][Full Text] [Related]
5. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning. Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028 [TBL] [Abstract][Full Text] [Related]
6. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets. Chetoui M; Akhloufi MA J Med Imaging (Bellingham); 2020 Jul; 7(4):044503. PubMed ID: 32904519 [No Abstract] [Full Text] [Related]
7. Contrastive self-supervised learning for diabetic retinopathy early detection. Ouyang J; Mao D; Guo Z; Liu S; Xu D; Wang W Med Biol Eng Comput; 2023 Sep; 61(9):2441-2452. PubMed ID: 37119374 [TBL] [Abstract][Full Text] [Related]
8. Detection of Diabetic Eye Disease from Retinal Images Using a Deep Learning Based CenterNet Model. Nazir T; Nawaz M; Rashid J; Mahum R; Masood M; Mehmood A; Ali F; Kim J; Kwon HY; Hussain A Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450729 [TBL] [Abstract][Full Text] [Related]
9. Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images. Kobat SG; Baygin N; Yusufoglu E; Baygin M; Barua PD; Dogan S; Yaman O; Celiker U; Yildirim H; Tan RS; Tuncer T; Islam N; Acharya UR Diagnostics (Basel); 2022 Aug; 12(8):. PubMed ID: 36010325 [TBL] [Abstract][Full Text] [Related]
10. Segmentation-Assisted Fully Convolutional Neural Network Enhances Deep Learning Performance to Identify Proliferative Diabetic Retinopathy. Alam M; Zhao EJ; Lam CK; Rubin DL J Clin Med; 2023 Jan; 12(1):. PubMed ID: 36615186 [TBL] [Abstract][Full Text] [Related]
11. A difficulty-aware and task-augmentation method based on meta-learning model for few-shot diabetic retinopathy classification. Liu X; Dong X; Li T; Zou X; Cheng C; Jiang Z; Gao Z; Duan S; Chen M; Liu T; Huang P; Li D; Lu H Quant Imaging Med Surg; 2024 Jan; 14(1):861-876. PubMed ID: 38223039 [TBL] [Abstract][Full Text] [Related]
12. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Xu K; Feng D; Mi H Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750 [TBL] [Abstract][Full Text] [Related]
13. A novel deep learning model for diabetic retinopathy detection in retinal fundus images using pre-trained CNN and HWBLSTM. Hemanth SV; Alagarsamy S; Rajkumar TD J Biomol Struct Dyn; 2024 Feb; ():1-19. PubMed ID: 38373067 [TBL] [Abstract][Full Text] [Related]
14. Deep learning innovations in diagnosing diabetic retinopathy: The potential of transfer learning and the DiaCNN model. Shoaib MR; Emara HM; Zhao J; El-Shafai W; Soliman NF; Mubarak AS; Omer OA; El-Samie FEA; Esmaiel H Comput Biol Med; 2024 Feb; 169():107834. PubMed ID: 38159396 [TBL] [Abstract][Full Text] [Related]
15. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290 [TBL] [Abstract][Full Text] [Related]
17. Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC). Das D; Biswas SK; Bandyopadhyay S Multimed Tools Appl; 2022 Nov; ():1-59. PubMed ID: 36467440 [TBL] [Abstract][Full Text] [Related]
18. UC-stack: a deep learning computer automatic detection system for diabetic retinopathy classification. Fu Y; Wei Y; Chen S; Chen C; Zhou R; Li H; Qiu M; Xie J; Huang D Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38271723 [No Abstract] [Full Text] [Related]
19. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy. S K S; P A J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453 [TBL] [Abstract][Full Text] [Related]
20. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning. Alyoubi WL; Abulkhair MF; Shalash WM Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]