These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35625188)

  • 1. Breaking the Rebellion: Photodynamic Inactivation against
    Wimmer A; Glueck M; Ckurshumova W; Liu J; Fefer M; Plaetzer K
    Antibiotics (Basel); 2022 Apr; 11(5):. PubMed ID: 35625188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Save the crop: Photodynamic Inactivation of plant pathogens I: bacteria.
    Glueck M; Hamminger C; Fefer M; Liu J; Plaetzer K
    Photochem Photobiol Sci; 2019 Jul; 18(7):1700-1708. PubMed ID: 31214675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodynamic Inactivation of plant pathogens part II: fungi.
    Hamminger C; Glueck M; Fefer M; Ckurshumova W; Liu J; Tenhaken R; Plaetzer K
    Photochem Photobiol Sci; 2022 Feb; 21(2):195-207. PubMed ID: 35044642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fly into the light: eliminating Drosophila melanogaster with chlorophyllin-based Photodynamic Inactivation.
    Fellner A; Bresgen N; Fefer M; Liu J; Plaetzer K
    Photochem Photobiol Sci; 2024 Jun; 23(6):1155-1166. PubMed ID: 38739325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In the Right Light: Photodynamic Inactivation of Microorganisms Using a LED-Based Illumination Device Tailored for the Antimicrobial Application.
    Hasenleitner M; Plaetzer K
    Antibiotics (Basel); 2019 Dec; 9(1):. PubMed ID: 31906034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodynamic Inactivation in agriculture: combating fungal phytopathogens resistant to conventional treatment.
    Jernej L; Frost DSM; Walker AS; Liu J; Fefer M; Plaetzer K
    Photochem Photobiol Sci; 2024 Jun; 23(6):1117-1128. PubMed ID: 38750328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora.
    McGhee GC; Sundin GW
    Phytopathology; 2011 Feb; 101(2):192-204. PubMed ID: 20923369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysozyme enhances the bactericidal effect of BP100 peptide against Erwinia amylovora, the causal agent of fire blight of rosaceous plants.
    Cabrefiga J; Montesinos E
    BMC Microbiol; 2017 Feb; 17(1):39. PubMed ID: 28212623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence and viable but non-culturable state induced by streptomycin in
    Kim YJ; Choi HS; Park DH
    Front Microbiol; 2024; 15():1346300. PubMed ID: 38450169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to Two Vinylglycine Antibiotic Analogs Is Conferred by Inactivation of Two Separate Amino Acid Transporters in
    Smith DDN; Williams AN; Verrett JN; Bergbusch NT; Manning V; Trippe K; Stavrinides J
    J Bacteriol; 2019 May; 201(9):. PubMed ID: 30745372
    [No Abstract]   [Full Text] [Related]  

  • 11. Prevalence of Streptomycin-Resistant Erwinia amylovora in New York Apple Orchards.
    Tancos KA; Villani S; Kuehne S; Borejsza-Wysocka E; Breth D; Carol J; Aldwinckle HS; Cox KD
    Plant Dis; 2016 Apr; 100(4):802-809. PubMed ID: 30688602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of streptomycin-resistant (Sm(R)) strains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of Sm(R) E. amylovora in Michigan.
    McGhee GC; Guasco J; Bellomo LM; Blumer-Schuette SE; Shane WW; Irish-Brown A; Sundin GW
    Phytopathology; 2011 Feb; 101(2):182-91. PubMed ID: 20923367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Antimicrobial Peptides Efficacy against Fire Blight (
    Sabri M; El Handi K; Valentini F; De Stradis A; Achbani EH; Benkirane R; Elbeaino T
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosensitizer to the rescue: in planta and field application of photodynamic inactivation against plant pathogenic bacteria.
    Islam MT; Ng K; Fefer M; Liu J; Uddin W; Ckurshumova W; Rosa C
    Plant Dis; 2022 Aug; ():. PubMed ID: 36040229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel biological control agent targeting the phytopathogen
    Dagher F; Olishevska S; Philion V; Zheng J; Déziel E
    Heliyon; 2020 Oct; 6(10):e05222. PubMed ID: 33102848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Distribution of Strains of
    Wallis A; Yannuzzi IM; Choi MW; Spafford J; Fenn M; Ramachandran P; Timme R; Pettengill JB; Cagle R; Ottesen A; Cox KD
    Plant Dis; 2021 Nov; 105(11):3554-3563. PubMed ID: 33599513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring Diversity and Origins of Streptomycin-Resistant Erwinia amylovora Isolates in New York Through CRISPR Spacer Arrays.
    Tancos KA; Cox KD
    Plant Dis; 2016 Jul; 100(7):1307-1313. PubMed ID: 30686185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual susceptibility of Erwinia amylovora to antibacterial agents in relation to the barrier function of its cell envelope.
    Chatterjee AK; Buss RF; Starr MP
    Antimicrob Agents Chemother; 1977 May; 11(5):897-905. PubMed ID: 879740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of metabolic and stress responses during subtoxic expression of the type I toxin hok in Erwinia amylovora.
    Peng J; Triplett LR; Sundin GW
    BMC Genomics; 2021 Jan; 22(1):74. PubMed ID: 33482720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Streptomycin-Resistant Isolates of Erwinia amylovora in New York.
    Russo NL; Burr TJ; Breth DI; Aldwinckle HS
    Plant Dis; 2008 May; 92(5):714-718. PubMed ID: 30769587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.