BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35625644)

  • 1. Conformational Entropy as a Potential Liability of Computationally Designed Antibodies.
    Löhr T; Sormanni P; Vendruscolo M
    Biomolecules; 2022 May; 12(5):. PubMed ID: 35625644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody.
    Zabetakis D; Anderson GP; Bayya N; Goldman ER
    PLoS One; 2013; 8(10):e77678. PubMed ID: 24143255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis for thermal stability and affinity in a VHH: Contribution of the framework region and its influence in the conformation of the CDR3.
    Kinoshita S; Nakakido M; Mori C; Kuroda D; Caaveiro JMM; Tsumoto K
    Protein Sci; 2022 Nov; 31(11):e4450. PubMed ID: 36153698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the binding loops configuration and surface adaptation of different crystallized single-domain antibodies in response to various antigens.
    Al Qaraghuli MM; Ferro VA
    J Mol Recognit; 2017 Apr; 30(4):. PubMed ID: 27862476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation-resistant domain antibodies engineered with charged mutations near the edges of the complementarity-determining regions.
    Perchiacca JM; Ladiwala AR; Bhattacharya M; Tessier PM
    Protein Eng Des Sel; 2012 Oct; 25(10):591-601. PubMed ID: 22843678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CDR1 Composition Can Affect Nanobody Recombinant Expression Yields.
    Orlando M; Fortuna S; Oloketuyi S; Bajc G; Goldenzweig A; de Marco A
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive charge in the complementarity-determining regions of synthetic nanobody prevents aggregation.
    Zhong Z; Yang Y; Chen X; Han Z; Zhou J; Li B; He X
    Biochem Biophys Res Commun; 2021 Oct; 572():1-6. PubMed ID: 34332323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antigen recognition by single-domain antibodies: structural latitudes and constraints.
    Henry KA; MacKenzie CR
    MAbs; 2018; 10(6):815-826. PubMed ID: 29916758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backbone flexibility of CDR3 and immune recognition of antigens.
    Haidar JN; Zhu W; Lypowy J; Pierce BG; Bari A; Persaud K; Luna X; Snavely M; Ludwig D; Weng Z
    J Mol Biol; 2014 Apr; 426(7):1583-99. PubMed ID: 24380763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A library approach for the
    Arras P; Yoo HB; Pekar L; Schröter C; Clarke T; Krah S; Klewinghaus D; Siegmund V; Evers A; Zielonka S
    MAbs; 2023; 15(1):2261149. PubMed ID: 37766540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal charged mutations in the complementarity-determining regions that prevent domain antibody aggregation are dependent on the antibody scaffold.
    Perchiacca JM; Lee CC; Tessier PM
    Protein Eng Des Sel; 2014 Feb; 27(2):29-39. PubMed ID: 24398633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the Diversity of the CDR-H3 Loop Conformational Ensembles in Relationship to Antibody Binding Properties.
    Fernández-Quintero ML; Loeffler JR; Kraml J; Kahler U; Kamenik AS; Liedl KR
    Front Immunol; 2018; 9():3065. PubMed ID: 30666252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide.
    Entzminger KC; Hyun JM; Pantazes RJ; Patterson-Orazem AC; Qerqez AN; Frye ZP; Hughes RA; Ellington AD; Lieberman RL; Maranas CD; Maynard JA
    Sci Rep; 2017 Aug; 7(1):10295. PubMed ID: 28860479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical basis for the affinity maturation of a camel single domain antibody.
    De Genst E; Handelberg F; Van Meirhaeghe A; Vynck S; Loris R; Wyns L; Muyldermans S
    J Biol Chem; 2004 Dec; 279(51):53593-601. PubMed ID: 15383540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity.
    Bostrom J; Haber L; Koenig P; Kelley RF; Fuh G
    PLoS One; 2011 Apr; 6(4):e17887. PubMed ID: 21526167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel heavy domain antibody library with functionally optimized complementarity determining regions.
    Mandrup OA; Friis NA; Lykkemark S; Just J; Kristensen P
    PLoS One; 2013; 8(10):e76834. PubMed ID: 24116173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody humanization by redesign of complementarity-determining region residues proximate to the acceptor framework.
    Hanf KJ; Arndt JW; Chen LL; Jarpe M; Boriack-Sjodin PA; Li Y; van Vlijmen HW; Pepinsky RB; Simon KJ; Lugovskoy A
    Methods; 2014 Jan; 65(1):68-76. PubMed ID: 23816785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NanoNet: Rapid and accurate end-to-end nanobody modeling by deep learning.
    Cohen T; Halfon M; Schneidman-Duhovny D
    Front Immunol; 2022; 13():958584. PubMed ID: 36032123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Classification of CDR-H3 in Single-Domain V
    Kuroda D; Tsumoto K
    Methods Mol Biol; 2023; 2552():61-79. PubMed ID: 36346585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural diversity in a human antibody germline library.
    Teplyakov A; Obmolova G; Malia TJ; Luo J; Muzammil S; Sweet R; Almagro JC; Gilliland GL
    MAbs; 2016; 8(6):1045-63. PubMed ID: 27210805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.