BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3562572)

  • 1. Ultraviolet hypersensitivity of Cockayne syndrome lymphoblastoid lines--the effects of exogenous beta-nicotinamide adenine dinucleotide.
    Otsuka F; Kukita A
    Photochem Photobiol; 1986 Dec; 44(6):757-60. PubMed ID: 3562572
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of lymphoblastoid cell lines to evaluate the hypersensitivity to ultraviolet radiation in Cockayne syndrome.
    Otsuka F; Tarone RE; Cayeux S; Robbins JH
    J Invest Dermatol; 1984 May; 82(5):480-4. PubMed ID: 6096450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet hypersensitivity of Cockayne's syndrome fibroblasts. Effects of nicotinamide adenine dinucleotide and poly(ADP-ribose) synthesis.
    Fujiwara Y; Goto K; Kano Y
    Exp Cell Res; 1982 May; 139(1):207-15. PubMed ID: 6806108
    [No Abstract]   [Full Text] [Related]  

  • 4. Cross-sensitivity of certain xeroderma pigmentosum and Cockayne syndrome fibroblast strains to both ionizing radiation and ultraviolet light.
    Chan GL; Little JB
    Mol Gen Genet; 1981; 181(4):562-3. PubMed ID: 6943407
    [No Abstract]   [Full Text] [Related]  

  • 5. Roles of poly(ADP-ribose) synthesis in repair and replication in normal human, Cockayne syndrome, and xeroderma pigmentosum fibroblasts after UV irradiation.
    Fujiwara Y; Goto K; Yamamoto K; Ichihashi M
    Princess Takamatsu Symp; 1983; 13():209-18. PubMed ID: 6418714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The recovery of colony-forming ability and the rate of semi-conservative DNA synthesis in ultraviolet-irradiated Cockayne and normal human cells.
    Ikenaga M; Inoue M; Kozuka T; Sugita T
    Mutat Res; 1981 Jan; 91(1):87-91. PubMed ID: 7207499
    [No Abstract]   [Full Text] [Related]  

  • 7. DNA repair and cancer: speculations based on studies with xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy.
    Lehmann AR; Norris PG
    Carcinogenesis; 1989 Aug; 10(8):1353-6. PubMed ID: 2752510
    [No Abstract]   [Full Text] [Related]  

  • 8. The Fritz-Lipmann lecture. DNA repair in human cells. Biochemistry of the hereditary diseases Fanconi's anaemia and Cockayne syndrome.
    Schweiger M; Auer B; Burtscher HJ; Hirsch-Kauffmann M; Klocker H; Schneider R
    Eur J Biochem; 1987 Jun; 165(2):235-42. PubMed ID: 3109898
    [No Abstract]   [Full Text] [Related]  

  • 9. Cockayne syndrome: clinicopathologic and tissue culture studies of affected siblings.
    Leech RW; Brumback RA; Miller RH; Otsuka F; Tarone RE; Robbins JH
    J Neuropathol Exp Neurol; 1985 Sep; 44(5):507-19. PubMed ID: 4031953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune function, mutant frequency, and cancer risk in the DNA repair defective genodermatoses xeroderma pigmentosum, Cockayne's syndrome, and trichothiodystrophy.
    Norris PG; Limb GA; Hamblin AS; Lehmann AR; Arlett CF; Cole J; Waugh AP; Hawk JL
    J Invest Dermatol; 1990 Jan; 94(1):94-100. PubMed ID: 2295840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Photosensitization and DNA repair. Possible nosologic relationship between Xeroderma pigmentosum and Cockayne's syndrome].
    Lafforet D; Dupuy JM
    Arch Fr Pediatr; 1978 Dec; 35(10 Suppl):65-74. PubMed ID: 749755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three complementation groups in Cockayne syndrome.
    Lehmann AR
    Mutat Res; 1982 Dec; 106(2):347-56. PubMed ID: 6185841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet light-induced sister chromatid exchanges in xeroderma pigmentosum and in Cockayne's syndrome lymphocyte cell lines.
    Cheng WS; Tarone RE; Andrews AD; Whang-Peng JS; Robbins JH
    Cancer Res; 1978 Jun; 38(6):1601-9. PubMed ID: 647673
    [No Abstract]   [Full Text] [Related]  

  • 14. Xeroderma pigmentosum group E and DDB2, a smaller subunit of damage-specific DNA binding protein: proposed classification of xeroderma pigmentosum, Cockayne syndrome, and ultraviolet-sensitive syndrome.
    Itoh T
    J Dermatol Sci; 2006 Feb; 41(2):87-96. PubMed ID: 16325378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery from ultraviolet tight-induced depression of ribosomal RNA synthesis in normal human, xeroderma pigmentosum and Cockayne syndrome cells.
    Ayaki H; Hara R; Ikenaga M
    J Radiat Res; 1996 Jun; 37(2):107-16. PubMed ID: 8840721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient expression of a plasmid gene, a tool to study DNA repair in human cells: defect of DNA repair in Cockayne syndrome; one thymine cyclobutane dimer is sufficient to block transcription.
    Klocker H; Schneider R; Burtscher HJ; Auer B; Hirsch-Kauffmann M; Schweiger M
    Eur J Cell Biol; 1986 Jan; 39(2):346-51. PubMed ID: 3956512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decrease of thymic hormone serum level in Cockayne syndrome.
    Bensman A; Dardenne M; Bach JF; Valleteau de Mouillac J; Lasfargues G
    Pediatr Res; 1982 Feb; 16(2):92-4. PubMed ID: 7058086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative repair of adenovirus damaged by sunlamp, UV and gamma-irradiation in Cockayne syndrome fibroblasts is different from that in xeroderma pigmentosum fibroblasts.
    Rainbow AJ
    Photochem Photobiol; 1989 Aug; 50(2):201-7. PubMed ID: 2675138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome aberrations and unscheduled DNA synthesis in X- and UV-irradiated lymphocytes from a boy with Bloom's syndrome and a man with xeroderma pigmentosum.
    Evans HJ; Adams AC; Clarkson JM; German J
    Cytogenet Cell Genet; 1978; 20(1-6):124-40. PubMed ID: 648171
    [No Abstract]   [Full Text] [Related]  

  • 20. A sensitive assay for detecting hypersensitivity to ionizing radiation in lymphoblastoid lines from patients with Duchenne muscular dystrophy and primary neuronal degenerations.
    Tarone RE; Otsuka F; Robbins JH
    J Neurol Sci; 1984 Sep; 65(3):367-81. PubMed ID: 6333487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.