These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35626219)

  • 1. Identifying Those at Risk of Glaucoma: A Deep Learning Approach for Optic Disc and Cup Segmentation and Their Boundary Analysis.
    Kim J; Tran L; Peto T; Chew EY
    Diagnostics (Basel); 2022 Apr; 12(5):. PubMed ID: 35626219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RimNet: A Deep Neural Network Pipeline for Automated Identification of the Optic Disc Rim.
    Rasheed HA; Davis T; Morales E; Fei Z; Grassi L; De Gainza A; Nouri-Mahdavi K; Caprioli J
    Ophthalmol Sci; 2023 Mar; 3(1):100244. PubMed ID: 36545262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images.
    Kadambi S; Wang Z; Xing E
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1205-1213. PubMed ID: 32445127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images.
    Mvoulana A; Kachouri R; Akil M
    Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint optic disc and cup boundary extraction from monocular fundus images.
    Chakravarty A; Sivaswamy J
    Comput Methods Programs Biomed; 2017 Aug; 147():51-61. PubMed ID: 28734530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optic disc and optic cup segmentation based on anatomy guided cascade network.
    Bian X; Luo X; Wang C; Liu W; Lin X
    Comput Methods Programs Biomed; 2020 Dec; 197():105717. PubMed ID: 32957060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust optic disc and cup segmentation with deep learning for glaucoma detection.
    Yu S; Xiao D; Frost S; Kanagasingam Y
    Comput Med Imaging Graph; 2019 Jun; 74():61-71. PubMed ID: 31022592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network.
    Liu B; Pan D; Song H
    BMC Med Imaging; 2021 Jan; 21(1):14. PubMed ID: 33509106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Joint optic disc and cup segmentation based on residual multi-scale fully convolutional neural network].
    Yuan X; Zheng X; Ji B; Li M; Li B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):875-884. PubMed ID: 33140612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network.
    Li F; Xiang W; Zhang L; Pan W; Zhang X; Jiang M; Zou H
    Eye (Lond); 2023 Apr; 37(6):1080-1087. PubMed ID: 35437003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning.
    Luo L; Xue D; Pan F; Feng X
    Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):905-914. PubMed ID: 33963969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning.
    Zhao R; Chen X; Liu X; Chen Z; Guo F; Li S
    IEEE J Biomed Health Inform; 2020 Apr; 24(4):1104-1113. PubMed ID: 31403451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of optic disc and optic cup in retinal fundus images using shape regression.
    Sedai S; Roy PK; Mahapatra D; Garnavi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3260-3264. PubMed ID: 28269003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated vertical cup-to-disc ratio determination from fundus images for glaucoma detection.
    Gao XR; Wu F; Yuhas PT; Rasel RK; Chiariglione M
    Sci Rep; 2024 Feb; 14(1):4494. PubMed ID: 38396048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Method for Optic Disc Segmentation Using Deep Learning on Retinal Fundus Images.
    Septiarini A; Hamdani H; Setyaningsih E; Junirianto E; Utaminingrum F
    Healthc Inform Res; 2023 Apr; 29(2):145-151. PubMed ID: 37190738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ranking of optic disc variables for detection of glaucomatous optic nerve damage.
    Jonas JB; Bergua A; Schmitz-Valckenberg P; Papastathopoulos KI; Budde WM
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1764-73. PubMed ID: 10845597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel lightweight deep learning approach for simultaneous optic cup and optic disc segmentation in glaucoma detection.
    Song Y; Zhang W; Zhang Y
    Math Biosci Eng; 2024 Mar; 21(4):5092-5117. PubMed ID: 38872528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning.
    Wang Y; Yu X; Wu C
    J Digit Imaging; 2022 Jun; 35(3):638-653. PubMed ID: 35212860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation.
    Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1417-1426. PubMed ID: 30762573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Glaucoma Detection from Stereo Fundus Images.
    Ong EP; Cheng J; Wong DWK; Tay ELT; Teo HY; Grace Loo R; Yip LWL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1540-1543. PubMed ID: 33018285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.