BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 35626523)

  • 1. Space-Air-Ground Integrated Mobile Crowdsensing for Partially Observable Data Collection by Multi-Scale Convolutional Graph Reinforcement Learning.
    Ren Y; Ye Z; Song G; Jiang X
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UAV-Assisted Cluster-Based Task Allocation for Mobile Crowdsensing in a Space-Air-Ground-Sea Integrated Network.
    Liu Y; Li Y; Cheng W; Wang W; Yang J
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments.
    Kong X; Zhou Y; Li Z; Wang S
    Front Neurorobot; 2023; 17():1302898. PubMed ID: 38318422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power Allocation and Energy Cooperation for UAV-Enabled MmWave Networks: A Multi-Agent Deep Reinforcement Learning Approach.
    Domingo MC
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable and Transferable Reinforcement Learning for Multi-Agent Mixed Cooperative-Competitive Environments Based on Hierarchical Graph Attention.
    Chen Y; Song G; Ye Z; Jiang X
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-Efficient UAV Movement Control for Fair Communication Coverage: A Deep Reinforcement Learning Approach.
    Nemer IA; Sheltami TR; Belhaiza S; Mahmoud AS
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-UAV Redeployment Optimization Based on Multi-Agent Deep Reinforcement Learning Oriented to Swarm Performance Restoration.
    Wu Q; Geng Z; Ren Y; Feng Q; Zhong J
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Searching and Tracking an Unknown Number of Targets: A Learning-Based Method Enhanced with Maps Merging.
    Yan P; Jia T; Bai C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proactive Handover Decision for UAVs with Deep Reinforcement Learning.
    Jang Y; Raza SM; Kim M; Choo H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk-Aware Distributionally Robust Optimization for Mobile Edge Computation Task Offloading in the Space-Air-Ground Integrated Network.
    Li Z; Chen P
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Objective Optimization in Air-to-Air Communication System Based on Multi-Agent Deep Reinforcement Learning.
    Lin S; Chen Y; Li S
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards 6G IoT: Tracing Mobile Sensor Nodes with Deep Learning Clustering in UAV Networks.
    Spyridis Y; Lagkas T; Sarigiannidis P; Argyriou V; Sarigiannidis A; Eleftherakis G; Zhang J
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Dynamic Task Allocation Framework in Mobile Crowd Sensing with D3QN.
    Fu Y; Shen Y; Tang L
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Reinforcement Learning for UAV Trajectory Design Considering Mobile Ground Users.
    Lee W; Jeon Y; Kim T; Kim YI
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Reinforcement Learning for Joint Trajectory Planning, Transmission Scheduling, and Access Control in UAV-Assisted Wireless Sensor Networks.
    Luo X; Chen C; Zeng C; Li C; Xu J; Gong S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-UAV autonomous collision avoidance based on PPO-GIC algorithm with CNN-LSTM fusion network.
    Liang C; Liu L; Liu C
    Neural Netw; 2023 May; 162():21-33. PubMed ID: 36878168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-UAV Path Planning in GPS and Communication Denial Environment.
    Xu Y; Wei Y; Wang D; Jiang K; Deng H
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning-Based Multi-UAV Flocking Control With Limited Visual Field and Instinctive Repulsion.
    Bai C; Yan P; Piao H; Pan W; Guo J
    IEEE Trans Cybern; 2024 Jan; 54(1):462-475. PubMed ID: 37028361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bio-Inspired Decision-Making Method of UAV Swarm for Attack-Defense Confrontation via Multi-Agent Reinforcement Learning.
    Chi P; Wei J; Wu K; Di B; Wang Y
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MW-MADDPG: a meta-learning based decision-making method for collaborative UAV swarm.
    Zhao M; Wang G; Fu Q; Guo X; Chen Y; Li T; Liu X
    Front Neurorobot; 2023; 17():1243174. PubMed ID: 37811355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.