These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35626570)

  • 1. Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection.
    Adler AI; Painsky A
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction.
    Staerk C; Mayr A
    BMC Bioinformatics; 2021 Sep; 22(1):441. PubMed ID: 34530737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Validated Variable Selection in Tree-Based Methods Improves Predictive Performance.
    Painsky A; Rosset S
    IEEE Trans Pattern Anal Mach Intell; 2017 Nov; 39(11):2142-2153. PubMed ID: 28114007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time milk analysis integrated with stacking ensemble learning as a tool for the daily prediction of cheese-making traits in Holstein cattle.
    Mota LFM; Giannuzzi D; Bisutti V; Pegolo S; Trevisi E; Schiavon S; Gallo L; Fineboym D; Katz G; Cecchinato A
    J Dairy Sci; 2022 May; 105(5):4237-4255. PubMed ID: 35282909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-validated tree-based models for multi-target learning.
    Nissenbaum Y; Painsky A
    Front Artif Intell; 2024; 7():1302860. PubMed ID: 38435799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data.
    Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A
    J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression.
    Zhou S; Wang S; Wu Q; Azim R; Li W
    Comput Biol Chem; 2020 Apr; 85():107200. PubMed ID: 32058946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting for high-dimensional two-class prediction.
    Blagus R; Lusa L
    BMC Bioinformatics; 2015 Sep; 16():300. PubMed ID: 26390865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAINTENS: Self-Attention and Intersample Attention Transformer for Digital Biomarker Development Using Tabular Healthcare Real World Data.
    Gutheil J; Donsa K
    Stud Health Technol Inform; 2022 May; 293():212-220. PubMed ID: 35592984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deselection of base-learners for statistical boosting-with an application to distributional regression.
    Strömer A; Staerk C; Klein N; Weinhold L; Titze S; Mayr A
    Stat Methods Med Res; 2022 Feb; 31(2):207-224. PubMed ID: 34882438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso.
    Kamkar I; Gupta SK; Phung D; Venkatesh S
    J Biomed Inform; 2015 Feb; 53():277-90. PubMed ID: 25500636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosted feature selectors: a case study on prediction P-gp inhibitors and substrates.
    Cerruela García G; García-Pedrajas N
    J Comput Aided Mol Des; 2018 Nov; 32(11):1273-1294. PubMed ID: 30367310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hyperspectral Image Classification Approach Based on Feature Fusion and Multi-Layered Gradient Boosting Decision Trees.
    Xu S; Liu S; Wang H; Chen W; Zhang F; Xiao Z
    Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33375698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JOURNAL CLUB: Use of Gradient Boosting Machine Learning to Predict Patient Outcome in Acute Ischemic Stroke on the Basis of Imaging, Demographic, and Clinical Information.
    Xie Y; Jiang B; Gong E; Li Y; Zhu G; Michel P; Wintermark M; Zaharchuk G
    AJR Am J Roentgenol; 2019 Jan; 212(1):44-51. PubMed ID: 30354266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Classification of Hot Spots and Hub Protein Interfaces by Recursive Feature Elimination and Gradient Boosting.
    Lin X; Zhang X; Xu X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1525-1534. PubMed ID: 31380766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature Selection Stability and Accuracy of Prediction Models for Genomic Prediction of Residual Feed Intake in Pigs Using Machine Learning.
    Piles M; Bergsma R; Gianola D; Gilbert H; Tusell L
    Front Genet; 2021; 12():611506. PubMed ID: 33692825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MagIO: Magnetic Field Strength Based Indoor- Outdoor Detection with a Commercial Smartphone.
    Ashraf I; Hur S; Park Y
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study.
    Woodman RJ; Bryant K; Sorich MJ; Pilotto A; Mangoni AA
    J Med Internet Res; 2021 Jun; 23(6):e26139. PubMed ID: 34152274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Algorithm to Estimate the Significance Level of a Feature Interaction Using the Extreme Gradient Boosting Machine.
    Guo CY; Chang KH
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.