These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 35626677)
21. Insights on the structural characteristics of Vim-TBS (58-81) peptide for future applications as a cell penetrating peptide. Saini A; Jaswal RR; Negi R; Nandel FS Biosci Trends; 2013 Oct; 7(5):209-20. PubMed ID: 24241171 [TBL] [Abstract][Full Text] [Related]
22. Comparison of four different peptides to enhance accumulation of liposomes into the brain. Qin Y; Zhang Q; Chen H; Yuan W; Kuai R; Xie F; Zhang L; Wang X; Zhang Z; Liu J; He Q J Drug Target; 2012 Apr; 20(3):235-45. PubMed ID: 22188312 [TBL] [Abstract][Full Text] [Related]
23. Development of a neuroprotective peptide that preserves survival pathways by preventing Kidins220/ARMS calpain processing induced by excitotoxicity. Gamir-Morralla A; López-Menéndez C; Ayuso-Dolado S; Tejeda GS; Montaner J; Rosell A; Iglesias T; Díaz-Guerra M Cell Death Dis; 2015 Oct; 6(10):e1939. PubMed ID: 26492372 [TBL] [Abstract][Full Text] [Related]
24. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides. Vagt T; Zschörnig O; Huster D; Koksch B Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794 [TBL] [Abstract][Full Text] [Related]
25. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model. Edwards AB; Anderton RS; Knuckey NW; Meloni BP Mol Cell Biochem; 2017 Feb; 426(1-2):75-85. PubMed ID: 27844251 [TBL] [Abstract][Full Text] [Related]
26. Characterization of the membrane penetration-enhancing peptide S19 derived from human syncytin-1 for the intracellular delivery of TAT-fused proteins. Suzuki M; Iwaki K; Kikuchi M; Fujiwara K; Doi N Biochem Biophys Res Commun; 2022 Jan; 586():63-67. PubMed ID: 34826702 [TBL] [Abstract][Full Text] [Related]
27. Oligoarginine vectors for intracellular delivery: role of arginine side-chain orientation in chain length-dependent destabilization of lipid membranes. Bouchet AM; Lairion F; Ruysschaert JM; Lensink MF Chem Phys Lipids; 2012 Jan; 165(1):89-96. PubMed ID: 22119850 [TBL] [Abstract][Full Text] [Related]
28. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Calnan BJ; Biancalana S; Hudson D; Frankel AD Genes Dev; 1991 Feb; 5(2):201-10. PubMed ID: 1899841 [TBL] [Abstract][Full Text] [Related]
29. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669 [TBL] [Abstract][Full Text] [Related]
30. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Herce HD; Garcia AE; Litt J; Kane RS; Martin P; Enrique N; Rebolledo A; Milesi V Biophys J; 2009 Oct; 97(7):1917-25. PubMed ID: 19804722 [TBL] [Abstract][Full Text] [Related]
31. A novel cell-penetrating peptide protects against neuron apoptosis after cerebral ischemia by inhibiting the nuclear translocation of annexin A1. Li X; Zheng L; Xia Q; Liu L; Mao M; Zhou H; Zhao Y; Shi J Cell Death Differ; 2019 Jan; 26(2):260-275. PubMed ID: 29769639 [TBL] [Abstract][Full Text] [Related]
32. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1. Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495 [TBL] [Abstract][Full Text] [Related]
33. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Dos Santos Rodrigues B; Lakkadwala S; Kanekiyo T; Singh J Int J Nanomedicine; 2019; 14():6497-6517. PubMed ID: 31616141 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. Ohgita T; Takechi-Haraya Y; Okada K; Matsui S; Takeuchi M; Saito C; Nishitsuji K; Uchimura K; Kawano R; Hasegawa K; Sakai-Kato K; Akaji K; Izutsu KI; Saito H Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183403. PubMed ID: 32585206 [TBL] [Abstract][Full Text] [Related]
35. No entry for TAT(44-57) into liposomes and intact MDCK cells: novel approach to study membrane permeation of cell-penetrating peptides. Krämer SD; Wunderli-Allenspach H Biochim Biophys Acta; 2003 Jan; 1609(2):161-9. PubMed ID: 12543377 [TBL] [Abstract][Full Text] [Related]
36. Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Wadhwani P; Reichert J; Bürck J; Ulrich AS Eur Biophys J; 2012 Feb; 41(2):177-87. PubMed ID: 22080286 [TBL] [Abstract][Full Text] [Related]
37. Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides. Moutal A; François-Moutal L; Brittain JM; Khanna M; Khanna R Front Cell Neurosci; 2014; 8():471. PubMed ID: 25674050 [TBL] [Abstract][Full Text] [Related]
38. Dissection of the Structural Features of a Fungicidal Antibody-Derived Peptide. Pertinhez TA; Ciociola T; Giovati L; Magliani W; Belletti S; Polonelli L; Conti S; Spisni A Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30487461 [TBL] [Abstract][Full Text] [Related]
39. Rational design, conformational analysis and membrane-penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia. Bai X; Chen X J Theor Biol; 2019 Jul; 473():44-51. PubMed ID: 30917919 [TBL] [Abstract][Full Text] [Related]
40. Introduction of constrained Trp analogs in RW9 modulates structure and partition in membrane models. Lozada C; Gonzalez S; Agniel R; Hindie M; Manciocchi L; Mazzanti L; Ha-Duong T; Santoro F; Carotenuto A; Ballet S; Lubin-Germain N Bioorg Chem; 2023 Oct; 139():106731. PubMed ID: 37480815 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]