These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 35626995)
41. Electrochemical Sensors and Biosensors for the Analysis of Tea Components: A Bibliometric Review. Shao J; Wang C; Shen Y; Shi J; Ding D Front Chem; 2021; 9():818461. PubMed ID: 35096777 [TBL] [Abstract][Full Text] [Related]
42. Polyphenol Analysis in Black Tea with a Carbon Nanotube Electrode. Murakami S; Takahashi S; Muguruma H; Osakabe N; Inoue H; Ohsawa T Anal Sci; 2019 May; 35(5):529-534. PubMed ID: 30606903 [TBL] [Abstract][Full Text] [Related]
43. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). Zimmermann BF; Walch SG; Tinzoh LN; Stühlinger W; Lachenmeier DW J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Aug; 879(24):2459-64. PubMed ID: 21783434 [TBL] [Abstract][Full Text] [Related]
44. Pharmacokinetics and biotransformation of tea polyphenols. Qiao J; Kong X; Kong A; Han M Curr Drug Metab; 2014 Jan; 15(1):30-6. PubMed ID: 24527703 [TBL] [Abstract][Full Text] [Related]
45. An improved method for the determination of green and black tea polyphenols in biomatrices by high-performance liquid chromatography with coulometric array detection. Lee MJ; Prabhu S; Meng X; Li C; Yang CS Anal Biochem; 2000 Mar; 279(2):164-9. PubMed ID: 10706785 [TBL] [Abstract][Full Text] [Related]
46. NMR, RP-HPLC-PDA-ESI-MS Sobolev AP; Di Lorenzo A; Circi S; Santarcangelo C; Ingallina C; Daglia M; Mannina L Molecules; 2021 Aug; 26(17):. PubMed ID: 34500554 [TBL] [Abstract][Full Text] [Related]
47. An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea. Liu Z; Xie HL; Chen L; Huang JH Molecules; 2018 May; 23(5):. PubMed ID: 29724034 [No Abstract] [Full Text] [Related]
48. Innovative Combination of Dispersive Solid Phase Extraction Followed by NIR-Detection and Multivariate Data Analysis for Prediction of Total Polyphenolic Content. Kappacher C; Neurauter M; Rainer M; Bonn GK; Huck CW Molecules; 2021 Aug; 26(16):. PubMed ID: 34443395 [TBL] [Abstract][Full Text] [Related]
49. High throughput qualitative analysis of polyphenols in tea samples by ultra-high pressure liquid chromatography coupled to UV and mass spectrometry detectors. Guillarme D; Casetta C; Bicchi C; Veuthey JL J Chromatogr A; 2010 Oct; 1217(44):6882-90. PubMed ID: 20850121 [TBL] [Abstract][Full Text] [Related]
50. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Massounga Bora AF; Ma S; Li X; Liu L Food Res Int; 2018 Mar; 105():241-249. PubMed ID: 29433212 [TBL] [Abstract][Full Text] [Related]
52. Identification of Chinese teas by a colorimetric sensor array based on tea polyphenol induced indicator displacement assay. Jia M; Pan Y; Zhou J; Zhang M Food Chem; 2021 Jan; 335():127566. PubMed ID: 32745839 [TBL] [Abstract][Full Text] [Related]
53. Antioxidant capacity and major polyphenol composition of teas as affected by geographical location, plantation elevation and leaf grade. Zhang C; Suen CL; Yang C; Quek SY Food Chem; 2018 Apr; 244():109-119. PubMed ID: 29120758 [TBL] [Abstract][Full Text] [Related]
54. Simultaneous determination of caffeine and some selected polyphenols in Wuyi Rock tea by high-performance liquid chromatography. Zhao F; Lin HT; Zhang S; Lin YF; Yang JF; Ye NX J Agric Food Chem; 2014 Apr; 62(13):2772-81. PubMed ID: 24625357 [TBL] [Abstract][Full Text] [Related]
55. Recent advances on tea polyphenols. Kanwar J; Taskeen M; Mohammad I; Huo C; Chan TH; Dou QP Front Biosci (Elite Ed); 2012 Jan; 4(1):111-31. PubMed ID: 22201858 [TBL] [Abstract][Full Text] [Related]
56. Rapid measurement of total polyphenol content in tea by kinetic matching approach on microfluidic paper-based analytical devices. Hao Z; Zheng Q; Jin L; Zhou S; Chen H; Liu X; Lu C Food Chem; 2021 Apr; 342():128368. PubMed ID: 33158681 [TBL] [Abstract][Full Text] [Related]
57. Immobilised tyrosinase-based biosensor for the detection of tea polyphenols. Abhijith KS; Kumar PV; Kumar MA; Thakur MS Anal Bioanal Chem; 2007 Dec; 389(7-8):2227-34. PubMed ID: 17928999 [TBL] [Abstract][Full Text] [Related]
58. New enzymatic method for the determination of total phenolic content in tea and wine. Stevanato R; Fabris S; Momo F J Agric Food Chem; 2004 Oct; 52(20):6287-93. PubMed ID: 15453702 [TBL] [Abstract][Full Text] [Related]
59. Metabolites profiling reveals gut microbiome-mediated biotransformation of green tea polyphenols in the presence of N-nitrosamine as pro-oxidant. Farag MA; Shakour ZTA; Elmassry MM; Donia MS Food Chem; 2022 Mar; 371():131147. PubMed ID: 34808759 [TBL] [Abstract][Full Text] [Related]
60. A one adsorbent QuEChERS method coupled with LC-MS/MS for simultaneous determination of 10 organophosphorus pesticide residues in tea. Yu C; Hao D; Chu Q; Wang T; Liu S; Lan T; Wang F; Pan C Food Chem; 2020 Aug; 321():126657. PubMed ID: 32244135 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]