These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35627001)

  • 21. Qualitative and Quantitative Correlation of Microstructural Properties and In Vitro Glucose Adsorption and Diffusion Behaviors of Pea Insoluble Dietary Fiber Induced by Ultrafine Grinding.
    Li L; Liu J; Zhang Y; Wang Q; Wang J
    Foods; 2022 Sep; 11(18):. PubMed ID: 36140942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of gamma irradiation on the physical and structural properties of basalt fiber.
    Yassien KM; El-Bakary MA
    Microsc Res Tech; 2019 Jun; 82(6):643-650. PubMed ID: 30698301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micronization Effects on Structural, Functional, and Antioxidant Properties of Wheat Bran.
    Lai S; Chen Z; Zhang Y; Li G; Wang Y; Cui Q
    Foods; 2022 Dec; 12(1):. PubMed ID: 36613314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and Electrochemical Evolution of Water Hyacinth-Derived Activated Carbon with Gamma Pretreatment for Supercapacitor Applications.
    Weerasuk B; Chutimasakul T; Prigyai N; Nilgumhang K; Kaeopookum P; Sangtawesin T
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modification of pea dietary fiber by ultrafine grinding and hypoglycemic effect in diabetes mellitus mice.
    Wang M; Chen X; Dong L; Nan X; Ji W; Wang S; Sun W; Zhou Q
    J Food Sci; 2021 Apr; 86(4):1273-1282. PubMed ID: 33761135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on enzymatic hydrolysis efficiency and physicochemical properties of cellulose and lignocellulose after pretreatment with electron beam irradiation.
    Fei X; Jia W; Wang J; Chen T; Ling Y
    Int J Biol Macromol; 2020 Feb; 145():733-739. PubMed ID: 31887387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of insoluble dietary fiber from three food sources and their potential hypoglycemic and hypolipidemic effects.
    Yang X; Dai J; Zhong Y; Wei X; Wu M; Zhang Y; Huang A; Wang L; Huang Y; Zhang C; Chen X; Xiao H
    Food Funct; 2021 Jul; 12(14):6576-6587. PubMed ID: 34100044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of gamma-irradiation effects on chitosan microparticles.
    Desai KG; Park HJ
    Drug Deliv; 2006; 13(1):39-50. PubMed ID: 16401592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of Ginseng Insoluble Dietary Fiber by Enzymatic Method: Structural, Rheological, Thermal and Functional Properties.
    Jiang G; Ramachandraiah K; Tan C; Cai N; Ameer K; Feng X
    Foods; 2023 Jul; 12(14):. PubMed ID: 37509900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of superfine pulverization technology on the morphology, microstructure, and physicochemical properties of Apium graveolens L. root.
    Sun J; Wang N; Wang C; Zhang S; Tian L
    Microsc Res Tech; 2022 Jul; 85(7):2455-2466. PubMed ID: 35286001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties.
    Luo X; Wang Q; Fang D; Zhuang W; Chen C; Jiang W; Zheng Y
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1461-1467. PubMed ID: 30261253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physicochemical structure and functional properties of soluble dietary fibers obtained by different modification methods from Mesona chinensis Benth. residue.
    Yang C; Si J; Chen Y; Xie J; Tian S; Cheng Y; Hu X; Yu Q
    Food Res Int; 2022 Jul; 157():111489. PubMed ID: 35761712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A turning point in the bacterial nanocellulose production employing low doses of gamma radiation.
    Al-Hagar OEA; Abol-Fotouh D
    Sci Rep; 2022 Apr; 12(1):7012. PubMed ID: 35488046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the physicochemical and
    Yang C; Ma Y; Chen Y; Xie J; Hu X; Yu Q
    Food Funct; 2022 Oct; 13(21):11321-11333. PubMed ID: 36239303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen peroxide modification affects the structure and physicochemical properties of dietary fibers from white turnip (Brassica Rapa L.).
    Gao Q; Zhou XJ; Ma R; Lin H; Wu JL; Peng X; Tanokura M; Xue YL
    Sci Rep; 2021 Jan; 11(1):1024. PubMed ID: 33441935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intensive study on structure transformation of muscovite single crystal under high-dose
    Wang H; Sun Y; Chu J; Wang X; Zhang M
    R Soc Open Sci; 2019 Jul; 6(7):190594. PubMed ID: 31417756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of microstructure on mechanical properties of corn cob.
    Zou Y; Fu J; Chen Z; Ren L
    Micron; 2021 Jul; 146():103070. PubMed ID: 33971478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of pea processing by-product for possible food industry applications.
    Nasir G; Zaidi S; Siddiqui A; Sirohi R
    J Food Sci Technol; 2023 Jun; 60(6):1782-1792. PubMed ID: 37187987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization.
    Benitez V; Rebollo-Hernanz M; Hernanz S; Chantres S; Aguilera Y; Martin-Cabrejas MA
    Food Res Int; 2019 Aug; 122():105-113. PubMed ID: 31229061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of alkaline hydrogen peroxide assisted with two modification methods on the physicochemical, structural and functional properties of bagasse insoluble dietary fiber.
    Luo M; Wang C; Wang C; Xie C; Hang F; Li K; Shi C
    Front Nutr; 2022; 9():1110706. PubMed ID: 36712504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.