These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35627101)

  • 1. Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms.
    Li F; Chu X; Dai L; Wang J; Liu J; Shang J
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. InDEP: an interpretable machine learning approach to predict cancer driver genes from multi-omics data.
    Yang H; Liu Y; Yang Y; Li D; Wang Z
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37649392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning methods for prediction of cancer driver genes: a survey paper.
    Andrades R; Recamonde-Mendoza M
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes.
    Sudhakar M; Rengaswamy R; Raman K
    Front Genet; 2022; 13():854190. PubMed ID: 35620468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating machine learning methodologies for identification of cancer driver genes.
    Malebary SJ; Khan YD
    Sci Rep; 2021 Jun; 11(1):12281. PubMed ID: 34112883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.
    Cava C; Bertoli G; Colaprico A; Olsen C; Bontempi G; Castiglioni I
    BMC Genomics; 2018 Jan; 19(1):25. PubMed ID: 29304754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IMI-driver: Integrating multi-level gene networks and multi-omics for cancer driver gene identification.
    Shi P; Han J; Zhang Y; Li G; Zhou X
    PLoS Comput Biol; 2024 Aug; 20(8):e1012389. PubMed ID: 39186807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving cancer driver gene identification using multi-task learning on graph convolutional network.
    Peng W; Tang Q; Dai W; Chen T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse overlapping group lasso for integrative multi-omics analysis.
    Park H; Niida A; Miyano S; Imoto S
    J Comput Biol; 2015 Feb; 22(2):73-84. PubMed ID: 25629319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repulsion and attraction in searching: A hybrid algorithm based on gravitational kernel and vital few for cancer driver gene prediction.
    He Z; Lin Y; Wei R; Liu C; Jiang D
    Comput Biol Med; 2022 Dec; 151(Pt A):106236. PubMed ID: 36370584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies.
    Han Y; Yang J; Qian X; Cheng WC; Liu SH; Hua X; Zhou L; Yang Y; Wu Q; Liu P; Lu Y
    Nucleic Acids Res; 2019 May; 47(8):e45. PubMed ID: 30773592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontology-based prediction of cancer driver genes.
    Althubaiti S; Karwath A; Dallol A; Noor A; Alkhayyat SS; Alwassia R; Mineta K; Gojobori T; Beggs AD; Schofield PN; Gkoutos GV; Hoehndorf R
    Sci Rep; 2019 Nov; 9(1):17405. PubMed ID: 31757986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method.
    Taheri G; Habibi M
    Comput Biol Med; 2024 Mar; 171():108234. PubMed ID: 38430742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of Driver Distraction: A Comprehensive Analysis of Feature Generation, Machine Learning, and Input Measures.
    McDonald AD; Ferris TK; Wiener TA
    Hum Factors; 2020 Sep; 62(6):1019-1035. PubMed ID: 31237788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.