These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 35627101)
21. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895 [TBL] [Abstract][Full Text] [Related]
22. TMO-Net: an explainable pretrained multi-omics model for multi-task learning in oncology. Wang FA; Zhuang Z; Gao F; He R; Zhang S; Wang L; Liu J; Li Y Genome Biol; 2024 Jun; 25(1):149. PubMed ID: 38845006 [TBL] [Abstract][Full Text] [Related]
23. DriverDBv4: a multi-omics integration database for cancer driver gene research. Liu CH; Lai YL; Shen PC; Liu HC; Tsai MH; Wang YD; Lin WJ; Chen FH; Li CY; Wang SC; Hung MC; Cheng WC Nucleic Acids Res; 2024 Jan; 52(D1):D1246-D1252. PubMed ID: 37956338 [TBL] [Abstract][Full Text] [Related]
24. DriverDBv3: a multi-omics database for cancer driver gene research. Liu SH; Shen PC; Chen CY; Hsu AN; Cho YC; Lai YL; Chen FH; Li CY; Wang SC; Chen M; Chung IF; Cheng WC Nucleic Acids Res; 2020 Jan; 48(D1):D863-D870. PubMed ID: 31701128 [TBL] [Abstract][Full Text] [Related]
25. Pan-cancer multi-omics analysis and orthogonal experimental assessment of epigenetic driver genes. Halaburkova A; Cahais V; Novoloaca A; Araujo MGDS; Khoueiry R; Ghantous A; Herceg Z Genome Res; 2020 Oct; 30(10):1517-1532. PubMed ID: 32963031 [TBL] [Abstract][Full Text] [Related]
26. Towards multi-omics characterization of tumor heterogeneity: a comprehensive review of statistical and machine learning approaches. Lee D; Park Y; Kim S Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020548 [TBL] [Abstract][Full Text] [Related]
27. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Sathyanarayanan A; Gupta R; Thompson EW; Nyholt DR; Bauer DC; Nagaraj SH Brief Bioinform; 2020 Dec; 21(6):1920-1936. PubMed ID: 31774481 [TBL] [Abstract][Full Text] [Related]
28. Interpretable meta-learning of multi-omics data for survival analysis and pathway enrichment. Cho HJ; Shu M; Bekiranov S; Zang C; Zhang A Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36864611 [TBL] [Abstract][Full Text] [Related]
29. Privacy-Preserving Identification of Cancer Subtype-Specific Driver Genes Based on Multigenomics Data with Privatedriver. Song J; Song Z; Zhang J; Gong Y J Comput Biol; 2024 Feb; 31(2):99-116. PubMed ID: 38271572 [TBL] [Abstract][Full Text] [Related]
30. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data. Nguyen QH; Le DH Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644 [TBL] [Abstract][Full Text] [Related]
31. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model. Zhao W; Gu X; Chen S; Wu J; Zhou Z Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338 [TBL] [Abstract][Full Text] [Related]
32. Multi-omics integration analysis of GPCRs in pan-cancer to uncover inter-omics relationships and potential driver genes. Li S; Chen X; Chen J; Wu B; Liu J; Guo Y; Li M; Pu X Comput Biol Med; 2023 Jul; 161():106988. PubMed ID: 37201441 [TBL] [Abstract][Full Text] [Related]
33. Network embedding framework for driver gene discovery by combining functional and structural information. Chu X; Guan B; Dai L; Liu JX; Li F; Shang J BMC Genomics; 2023 Jul; 24(1):426. PubMed ID: 37516822 [TBL] [Abstract][Full Text] [Related]
34. Pan-cancer detection of driver genes at the single-patient resolution. Nulsen J; Misetic H; Yau C; Ciccarelli FD Genome Med; 2021 Feb; 13(1):12. PubMed ID: 33517897 [TBL] [Abstract][Full Text] [Related]
35. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework. Yang H; Wei Q; Zhong X; Yang H; Li B Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769 [TBL] [Abstract][Full Text] [Related]
36. NESM: a network embedding method for tumor stratification by integrating multi-omics data. Li F; Sun Z; Liu JX; Shang J; Dai L; Liu X; Li Y G3 (Bethesda); 2022 Nov; 12(11):. PubMed ID: 36124952 [TBL] [Abstract][Full Text] [Related]
37. From multi-omics data to the cancer druggable gene discovery: a novel machine learning-based approach. Yang H; Gan L; Chen R; Li D; Zhang J; Wang Z Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36515158 [TBL] [Abstract][Full Text] [Related]
38. driveR: a novel method for prioritizing cancer driver genes using somatic genomics data. Ülgen E; Sezerman OU BMC Bioinformatics; 2021 May; 22(1):263. PubMed ID: 34030627 [TBL] [Abstract][Full Text] [Related]
39. A systematic view of computational methods for identifying driver genes based on somatic mutation data. Kan Y; Jiang L; Tang J; Guo Y; Guo F Brief Funct Genomics; 2021 Sep; 20(5):333-343. PubMed ID: 34312663 [TBL] [Abstract][Full Text] [Related]
40. SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors. Newberg JY; Black MA; Jenkins NA; Copeland NG; Mann KM; Mann MB Nucleic Acids Res; 2018 Sep; 46(16):e94. PubMed ID: 29846651 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]