These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 35627242)

  • 21. Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio.
    Sorlien EL; Witucki MA; Ogas J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30222157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome editing comes of age.
    Kim JS
    Nat Protoc; 2016 Sep; 11(9):1573-8. PubMed ID: 27490630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish.
    Yu C; Zhang Y; Yao S; Wei Y
    PLoS One; 2014; 9(6):e98282. PubMed ID: 24901507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TALEN-Mediated Mutagenesis and Genome Editing.
    Ma AC; Chen Y; Blackburn PR; Ekker SC
    Methods Mol Biol; 2016; 1451():17-30. PubMed ID: 27464798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Basics of genome editing technology and its application in livestock species.
    Petersen B
    Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genotype to Phenotype: CRISPR Gene Editing Reveals Genetic Compensation as a Mechanism for Phenotypic Disjunction of Morphants and Mutants.
    Salanga CM; Salanga MC
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33801686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.
    Okoli A; Okeke MI; Tryland M; Moens U
    Viruses; 2018 Jan; 10(1):. PubMed ID: 29361752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases.
    Renaud JB; Boix C; Charpentier M; De Cian A; Cochennec J; Duvernois-Berthet E; Perrouault L; Tesson L; Edouard J; Thinard R; Cherifi Y; Menoret S; Fontanière S; de Crozé N; Fraichard A; Sohm F; Anegon I; Concordet JP; Giovannangeli C
    Cell Rep; 2016 Mar; 14(9):2263-2272. PubMed ID: 26923600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advances in the Production of Genome-Edited Rats.
    Sato M; Nakamura S; Inada E; Takabayashi S
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene editing and CRISPR in the clinic: current and future perspectives.
    Hirakawa MP; Krishnakumar R; Timlin JA; Carney JP; Butler KS
    Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32207531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis.
    Lonowski LA; Narimatsu Y; Riaz A; Delay CE; Yang Z; Niola F; Duda K; Ober EA; Clausen H; Wandall HH; Hansen SH; Bennett EP; Frödin M
    Nat Protoc; 2017 Mar; 12(3):581-603. PubMed ID: 28207001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements.
    Nasrallah A; Sulpice E; Kobaisi F; Gidrol X; Rachidi W
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient genome editing in zebrafish using a CRISPR-Cas system.
    Hwang WY; Fu Y; Reyon D; Maeder ML; Tsai SQ; Sander JD; Peterson RT; Yeh JR; Joung JK
    Nat Biotechnol; 2013 Mar; 31(3):227-9. PubMed ID: 23360964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome editing using artificial site-specific nucleases in zebrafish.
    Hisano Y; Ota S; Kawahara A
    Dev Growth Differ; 2014 Jan; 56(1):26-33. PubMed ID: 24117409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR.
    Shamshirgaran Y; Liu J; Sumer H; Verma PJ; Taheri-Ghahfarokhi A
    Methods Mol Biol; 2022; 2495():29-46. PubMed ID: 35696026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progress in and Prospects of Genome Editing Tools for Human Disease Model Development and Therapeutic Applications.
    Phan HTL; Kim K; Lee H; Seong JK
    Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.