BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35627256)

  • 1. Multi-Objective Artificial Bee Colony Algorithm Based on Scale-Free Network for Epistasis Detection.
    Gu Y; Sun Y; Shang J; Li F; Guan B; Liu JX
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFSBN: A Method of Artificial Fish Swarm Optimizing Bayesian Network for Epistasis Detection.
    Wang L; Wang Y; Fu Y; Gao Y; Du J; Yang C; Liu J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1369-1383. PubMed ID: 31670676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm.
    Chen Y; Xu F; Pian C; Xu M; Kong L; Fang J; Li Z; Zhang L
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33525573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network.
    Guo Y; Zhong Z; Yang C; Hu J; Jiang Y; Liang Z; Gao H; Liu J
    BMC Bioinformatics; 2019 Aug; 20(1):444. PubMed ID: 31455207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks.
    Han B; Chen XW; Talebizadeh Z; Xu H
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Approach of Epistasis Detection Using Integer Linear Programming Optimizing Bayesian Network.
    Yang X; Yang C; Lei J; Liu J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2654-2671. PubMed ID: 34181547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing Heuristic Information Into Ant Colony Optimization Algorithm for Identifying Epistasis.
    Sun Y; Wang X; Shang J; Liu JX; Zheng CH; Lei X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1253-1261. PubMed ID: 30403637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Multitasking Ant Colony Optimization Method for Detecting Multiorder SNP Interactions.
    Tuo S; Li C; Liu F; Zhu Y; Chen T; Feng Z; Liu H; Li A
    Interdiscip Sci; 2022 Dec; 14(4):814-832. PubMed ID: 35788965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multipopulation harmony search algorithm for the detection of high-order SNP interactions.
    Tuo S; Liu H; Chen H
    Bioinformatics; 2020 Aug; 36(16):4389-4398. PubMed ID: 32227192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm.
    Tuo S; Zhang J; Yuan X; Zhang Y; Liu Z
    PLoS One; 2016; 11(3):e0150669. PubMed ID: 27014873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies.
    Jing PJ; Shen HB
    Bioinformatics; 2015 Mar; 31(5):634-41. PubMed ID: 25338719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Adjusting Ant Colony Optimization Based on Information Entropy for Detecting Epistatic Interactions.
    Guan B; Zhao Y
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30717303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies.
    Han B; Chen XW
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S9. PubMed ID: 21989368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Improved Opposition-Based Learning Particle Swarm Optimization for the Detection of SNP-SNP Interactions.
    Shang J; Sun Y; Li S; Liu JX; Zheng CH; Zhang J
    Biomed Res Int; 2015; 2015():524821. PubMed ID: 26236727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast algorithm for learning epistatic genomic relationships.
    Jiang X; Neapolitan RE; Barmada MM; Visweswaran S; Cooper GF
    AMIA Annu Symp Proc; 2010 Nov; 2010():341-5. PubMed ID: 21346997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting genome-wide epistases based on the clustering of relatively frequent items.
    Xie M; Li J; Jiang T
    Bioinformatics; 2012 Jan; 28(1):5-12. PubMed ID: 22053078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature-Inspired Multiobjective Epistasis Elucidation from Genome-Wide Association Studies.
    Li X; Zhang S; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):226-237. PubMed ID: 29994485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Markov blanket-based method for detecting causal SNPs in GWAS.
    Han B; Park M; Chen XW
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An epistasis and heterogeneity analysis method based on maximum correlation and maximum consistence criteria.
    Chen X; Lin Y; Qu Q; Ning B; Chen H; Li X
    Math Biosci Eng; 2021 Sep; 18(6):7711-7726. PubMed ID: 34814271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DualWMDR: Detecting epistatic interaction with dual screening and multifactor dimensionality reduction.
    Cao X; Yu G; Ren W; Guo M; Wang J
    Hum Mutat; 2020 Mar; 41(3):719-734. PubMed ID: 31705708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.