BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35627261)

  • 1.
    Possoz C; Yamaichi Y; Galli E; Ferat JL; Barre FX
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole.
    Yamaichi Y; Bruckner R; Ringgaard S; Möll A; Cameron DE; Briegel A; Jensen GJ; Davis BM; Waldor MK
    Genes Dev; 2012 Oct; 26(20):2348-60. PubMed ID: 23070816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parA homolog selectively influences positioning of the large chromosome origin in Vibrio cholerae.
    Saint-Dic D; Frushour BP; Kehrl JH; Kahng LS
    J Bacteriol; 2006 Aug; 188(15):5626-31. PubMed ID: 16855253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct centromere-like parS sites on the two chromosomes of Vibrio spp.
    Yamaichi Y; Fogel MA; McLeod SM; Hui MP; Waldor MK
    J Bacteriol; 2007 Jul; 189(14):5314-24. PubMed ID: 17496089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insensitivity of chromosome I and the cell cycle to blockage of replication and segregation of Vibrio cholerae chromosome II.
    Kadoya R; Chattoraj DK
    mBio; 2012; 3(3):. PubMed ID: 22570276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The two Cis-acting sites, parS1 and oriC1, contribute to the longitudinal organisation of Vibrio cholerae chromosome I.
    David A; Demarre G; Muresan L; Paly E; Barre FX; Possoz C
    PLoS Genet; 2014 Jul; 10(7):e1004448. PubMed ID: 25010199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single parS sequence from the cluster of four sites closest to oriC is necessary and sufficient for proper chromosome segregation in Pseudomonas aeruginosa.
    Jecz P; Bartosik AA; Glabski K; Jagura-Burdzy G
    PLoS One; 2015; 10(3):e0120867. PubMed ID: 25794281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse Partners of the Partitioning ParB Protein in Pseudomonas aeruginosa.
    Kawalek A; Glabski K; Bartosik AA; Wozniak D; Kusiak M; Gawor J; Zuchniewicz K; Jagura-Burdzy G
    Microbiol Spectr; 2023 Feb; 11(1):e0428922. PubMed ID: 36622167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis.
    Lee PS; Grossman AD
    Mol Microbiol; 2006 May; 60(4):853-69. PubMed ID: 16677298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional Control of Chromosome Segregation in Pseudomonas aeruginosa.
    Lagage V; Boccard F; Vallet-Gely I
    PLoS Genet; 2016 Nov; 12(11):e1006428. PubMed ID: 27820816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication.
    Kadoya R; Baek JH; Sarker A; Chattoraj DK
    J Bacteriol; 2011 Apr; 193(7):1504-14. PubMed ID: 21257772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conserved mechanism drives partition complex assembly on bacterial chromosomes and plasmids.
    Debaugny RE; Sanchez A; Rech J; Labourdette D; Dorignac J; Geniet F; Palmeri J; Parmeggiani A; Boudsocq F; Anton Leberre V; Walter JC; Bouet JY
    Mol Syst Biol; 2018 Nov; 14(11):e8516. PubMed ID: 30446599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.
    Yamaichi Y; Gerding MA; Davis BM; Waldor MK
    PLoS Genet; 2011 Jul; 7(7):e1002189. PubMed ID: 21811418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell division licensing in the multi-chromosomal Vibrio cholerae bacterium.
    Galli E; Poidevin M; Le Bars R; Desfontaines JM; Muresan L; Paly E; Yamaichi Y; Barre FX
    Nat Microbiol; 2016 Jun; 1(9):16094. PubMed ID: 27562255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial chromosome segregation by the ParABS system.
    Jalal ASB; Le TBK
    Open Biol; 2020 Jun; 10(6):200097. PubMed ID: 32543349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Management of multipartite genomes: the Vibrio cholerae model.
    Val ME; Soler-Bistué A; Bland MJ; Mazel D
    Curr Opin Microbiol; 2014 Dec; 22():120-6. PubMed ID: 25460805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome segregation proteins of Vibrio cholerae as transcription regulators.
    Baek JH; Rajagopala SV; Chattoraj DK
    mBio; 2014 May; 5(3):e01061-14. PubMed ID: 24803519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct segregation dynamics of the two Vibrio cholerae chromosomes.
    Fogel MA; Waldor MK
    Mol Microbiol; 2005 Jan; 55(1):125-36. PubMed ID: 15612922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ParABS systems of the four replicons of Burkholderia cenocepacia: new chromosome centromeres confer partition specificity.
    Dubarry N; Pasta F; Lane D
    J Bacteriol; 2006 Feb; 188(4):1489-96. PubMed ID: 16452432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae.
    Val ME; Marbouty M; de Lemos Martins F; Kennedy SP; Kemble H; Bland MJ; Possoz C; Koszul R; Skovgaard O; Mazel D
    Sci Adv; 2016 Apr; 2(4):e1501914. PubMed ID: 27152358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.