These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35627484)

  • 1. Development of Ammonia Emission Factor for Industrial Waste Incineration Facilities Considering Incinerator Type.
    Roh J; Kang S; Gong B; Lee K; Jeon EC
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the Characteristics and Emission Factor of Ammonia from Sewage Sludge Incinerator.
    Kang S; Roh J; Jeon EC
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33806374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emission of greenhouse gases from waste incineration in Korea.
    Hwang KL; Choi SM; Kim MK; Heo JB; Zoh KD
    J Environ Manage; 2017 Jul; 196():710-718. PubMed ID: 28371748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonia Emission Sources Characteristics and Emission Factor Uncertainty at Liquefied Natural Gas Power Plants.
    Kang S; Kim SD; Jeon EC
    Int J Environ Res Public Health; 2020 May; 17(11):. PubMed ID: 32466436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.
    Park S; Choi JH; Park J
    Waste Manag; 2011 Aug; 31(8):1765-71. PubMed ID: 21478007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.
    Ma P; Ma Z; Yan J; Chi Y; Ni M; Cen K
    Waste Manag Res; 2011 Oct; 29(10):1108-12. PubMed ID: 21746756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.
    Lv D; Zhu T; Liu R; Lv Q; Sun Y; Wang H; Liu Y; Zhang F
    Chemosphere; 2016 Sep; 159():595-601. PubMed ID: 27343866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A research on dioxin generation from the industrial waste incineration.
    Yoneda K; Ikeguchi T; Yagi Y; Tamade Y; Omori K
    Chemosphere; 2002 Mar; 46(9-10):1309-19. PubMed ID: 12002456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of incombustibles in the feedstock to incineration facilities in Republic of Korea for optimum sorting and management.
    Kim K; Lee S; Yang W; Choi G; Lee W; Shin S
    Waste Manag Res; 2021 Jun; 39(6):879-887. PubMed ID: 33028180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln.
    Vermeulen I; Van Caneghem J; Block C; Dewulf W; Vandecasteele C
    Waste Manag; 2012 Oct; 32(10):1853-63. PubMed ID: 22739430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China.
    Wang T; Chen T; Lin X; Zhan M; Li X
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5607-5618. PubMed ID: 28035608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland.
    Harris E; Zeyer K; Kegel R; Müller B; Emmenegger L; Mohn J
    Waste Manag; 2015 Jan; 35():135-40. PubMed ID: 25458765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding of hazardous waste incineration through computational fluid-dynamics simulation.
    Yang Y; Reuter MA; Voncken JH; Verwoerd J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(4):693-705. PubMed ID: 12046666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulation of incineration of chemically and biologically contaminated wastes.
    Lemieux P; Boe T; Tschursin A; Denison MK; Davis K; Swensen D
    J Air Waste Manag Assoc; 2021 Apr; 71(4):462-476. PubMed ID: 33216705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the dynamic model of Saeman to an industrial rotary kiln incinerator: numerical and experimental results.
    Ndiaye LG; Caillat S; Chinnayya A; Gambier D; Baudoin B
    Waste Manag; 2010 Jul; 30(7):1188-95. PubMed ID: 19850459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.
    Kang S; Kim S; Lee J; Yun H; Kim KH; Jeon EC
    J Air Waste Manag Assoc; 2016 Oct; 66(10):971-7. PubMed ID: 27191178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of incombustibles in the feedstock to incineration facilities in South Korea for optimum sorting and management.
    Kim K; Lee S; Yang W; Choi G; Lee W; Shin S
    Waste Manag Res; 2021 Apr; 39(4):620-628. PubMed ID: 33208051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving long-term operation performance of hazardous waste rotary kiln incineration facilities: An evaluation with DEA model.
    Tao Y; Feng Q; Chen Y
    Waste Manag; 2024 Feb; 174():575-584. PubMed ID: 38142563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.
    Bujak J
    Waste Manag; 2015 Aug; 42():148-58. PubMed ID: 25987288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Levels, profiles, and emission characteristics of chlorobenzenes in ash samples from some industrial thermal facilities in northern Vietnam.
    Nguyen HT; Nguyen TTT; Tung NH; Hoang AQ; Pham LH; Minh TB
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):188-198. PubMed ID: 30387061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.