These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 35628212)
1. Network-Pharmacology-Based Study on Active Phytochemicals and Molecular Mechanism of Khan SA; Lee TKW Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628212 [TBL] [Abstract][Full Text] [Related]
2. Network pharmacology and molecular docking-based prediction of active compounds and mechanisms of action of Cnidii Fructus in treating atopic dermatitis. Khan SA; Wu Y; Li AS; Fu XQ; Yu ZL BMC Complement Med Ther; 2022 Oct; 22(1):275. PubMed ID: 36261841 [TBL] [Abstract][Full Text] [Related]
3. Exploring the mechanism of bioactive components of Prunella vulgaris L. in treating hepatocellular carcinoma based on network pharmacology. Tu H; Feng Y; Wang W; Zhou H; Cai Q; Feng Y Chem Biol Drug Des; 2024 Jan; 103(1):e14413. PubMed ID: 38040415 [TBL] [Abstract][Full Text] [Related]
4. Advanced network pharmacology study reveals multi-pathway and multi-gene regulatory molecular mechanism of Bacopa monnieri in liver cancer based on data mining, molecular modeling, and microarray data analysis. Sadaqat M; Qasim M; Tahir Ul Qamar M; Masoud MS; Ashfaq UA; Noor F; Fatima K; Allemailem KS; Alrumaihi F; Almatroudi A Comput Biol Med; 2023 Jul; 161():107059. PubMed ID: 37244150 [TBL] [Abstract][Full Text] [Related]
5. [Molecular mechanism of Puerariae Lobatae Radix in treatment of hepatocellular carcinoma based on network pharmacology]. Min Z; Yuan Z; Ye C; Nan XU; Wei-Bing LI; Cheng-Yu WU; Yan C Zhongguo Zhong Yao Za Zhi; 2020 Sep; 45(17):4089-4098. PubMed ID: 33164393 [TBL] [Abstract][Full Text] [Related]
6. Active ingredients and molecular targets of Zheng Y; Ji S; Li X; Feng Q PeerJ; 2022; 10():e13737. PubMed ID: 35873910 [TBL] [Abstract][Full Text] [Related]
7. Investigations of nitazoxanide molecular targets and pathways for the treatment of hepatocellular carcinoma using network pharmacology and molecular docking. Khan SA; Lee TKW Front Pharmacol; 2022; 13():968148. PubMed ID: 35959427 [TBL] [Abstract][Full Text] [Related]
8. Network Pharmacology-Based Strategy to Investigate the Mechanisms of Lenvatinib in the Treatment of Hepatocellular Carcinoma. Liu P; Han B; Zhang Y; Wang X Comput Intell Neurosci; 2022; 2022():7102500. PubMed ID: 35720901 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation. Lu S; Sun X; Zhou Z; Tang H; Xiao R; Lv Q; Wang B; Qu J; Yu J; Sun F; Deng Z; Tian Y; Li C; Yang Z; Yang P; Rao B Front Immunol; 2023; 14():1235575. PubMed ID: 37799727 [TBL] [Abstract][Full Text] [Related]
10. [Study on molecular mechanism of Solanum nigrum in treatment of hepatocarcinoma based on network pharmacology and molecular docking]. Liu JH; Lyu DY; Zhou HM; Kuang WH; Chen ZX; Zhang SJ Zhongguo Zhong Yao Za Zhi; 2020 Jan; 45(1):163-168. PubMed ID: 32237426 [TBL] [Abstract][Full Text] [Related]
11. Systems Pharmacology-Based Identification of Mechanisms of Action of Bolbostemma paniculatum for the Treatment of Hepatocellular Carcinoma. Wang LL; Liao C; Li XQ; Dai R; Ren QW; Shi HL; Wang XP; Feng XS; Chao X Med Sci Monit; 2021 Jan; 27():e927624. PubMed ID: 33436534 [TBL] [Abstract][Full Text] [Related]
12. Integrated System Pharmacology Approaches to Elucidate Multi-Target Mechanism of Khalid HR; Aamir M; Tabassum S; Alghamdi YS; Alzamami A; Ashfaq UA Molecules; 2022 Sep; 27(19):. PubMed ID: 36234758 [TBL] [Abstract][Full Text] [Related]
13. Integrating Network Pharmacology and Bioinformatics to Explore the Effects of Dangshen ( Yu Y; Ding S; Xu X; Yan D; Fan Y; Ruan B; Zhang X; Zheng L; Jie W; Zheng S Drug Des Devel Ther; 2023; 17():659-673. PubMed ID: 36883114 [TBL] [Abstract][Full Text] [Related]
14. Integrating network pharmacology, bioinformatics, and experimental validation to unveil the molecular targets and mechanisms of galangin for treating hepatocellular carcinoma. Li X; Zhou M; Chen W; Sun J; Zhao Y; Wang G; Wang B; Pan Y; Zhang J; Xu J BMC Complement Med Ther; 2024 May; 24(1):208. PubMed ID: 38816744 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatic and experimental data decipher the pharmacological targets and mechanisms of plumbagin against hepatocellular carcinoma. Zhou R; Wu K; Su M; Li R Environ Toxicol Pharmacol; 2019 Aug; 70():103200. PubMed ID: 31158732 [TBL] [Abstract][Full Text] [Related]
16. Exploring the potential targets of Sanshimao formula for hepatocellular carcinoma treatment by a method of network pharmacology combined with molecular biology. Yu Q; Chen Z; Liu M; Meng Y; Li X; Li B; Du J J Ethnopharmacol; 2022 Oct; 297():115531. PubMed ID: 35840058 [TBL] [Abstract][Full Text] [Related]
17. Exploring the mechanism of aloe-emodin in the treatment of liver cancer through network pharmacology and cell experiments. Zhu M; He Q; Wang Y; Duan L; Rong K; Wu Y; Ding Y; Mi Y; Ge X; Yang X; Yu Y Front Pharmacol; 2023; 14():1238841. PubMed ID: 37900162 [No Abstract] [Full Text] [Related]
18. Network Pharmacology-Based Approach Combined with Bioinformatic Analytics to Elucidate the Potential of Curcumol against Hepatocellular Carcinoma. Huang X; Rehman HM; Szöllősi AG; Zhou S Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456457 [TBL] [Abstract][Full Text] [Related]
19. Effect of gigantol on the proliferation of hepatocellular carcinoma cells tested by a network-based pharmacological approach and experiments. Li S; Li H; Yin D; Xue X; Chen X; Li X; Li J; Yi Y Front Biosci (Landmark Ed); 2022 Jan; 27(1):25. PubMed ID: 35090330 [TBL] [Abstract][Full Text] [Related]
20. Identification of peanut skin components for treating hepatocellular carcinoma via network pharmacology and in vitro experiments. Li S; Liu W; Wang TT; Chen TQ; Guo JC Chem Biol Drug Des; 2024 Jan; 103(1):e14428. PubMed ID: 38230768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]