BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35628238)

  • 1. Improving Printability of Digital-Light-Processing 3D Bioprinting via Photoabsorber Pigment Adjustment.
    Seo JW; Kim GM; Choi Y; Cha JM; Bae H
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning.
    Guan J; You S; Xiang Y; Schimelman J; Alido J; Ma X; Tang M; Chen S
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34798629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Characterization of Liquid Photosensitive Bioink Properties for Continuous Digital Light Processing Based Printing.
    Li Y; Wang Y; Yin J; Qian J
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37125792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printability in extrusion bioprinting.
    Fu Z; Naghieh S; Xu C; Wang C; Sun W; Chen X
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33601340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting.
    Huh J; Moon YW; Park J; Atala A; Yoo JJ; Lee SJ
    Biofabrication; 2021 May; 13(3):. PubMed ID: 33930877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications.
    Sultan MT; Lee OJ; Lee JS; Park CH
    Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.
    Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F
    Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins.
    Wu Z; Liu J; Lin J; Lu L; Tian J; Li L; Zhou C
    Biomacromolecules; 2022 Jan; 23(1):240-252. PubMed ID: 34931820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital light processing-based multi-material bioprinting: Processes, applications, and perspectives.
    Wu Y; Su H; Li M; Xing H
    J Biomed Mater Res A; 2023 Apr; 111(4):527-542. PubMed ID: 36436142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.
    Zhao Y; Li Y; Mao S; Sun W; Yao R
    Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerization-Based 3D Printing.
    Li W; Mille LS; Robledo JA; Uribe T; Huerta V; Zhang YS
    Adv Healthc Mater; 2020 Aug; 9(15):e2000156. PubMed ID: 32529775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection-based 3D bioprinting.
    Sun Y; Yu K; Nie J; Sun M; Fu J; Wang H; He Y
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 32640425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
    Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R
    Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing.
    Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH
    Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.