BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35628347)

  • 1. Ipsilateral and Contralateral Interactions in Spinal Locomotor Circuits Mediated by V1 Neurons: Insights from Computational Modeling.
    Shevtsova NA; Li EZ; Singh S; Dougherty KJ; Rybak IA
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons(1,2,3).
    Rybak IA; Dougherty KJ; Shevtsova NA
    eNeuro; 2015 Sep; 2(5):. PubMed ID: 26478909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic Activation of V1 Interneurons Reveals the Multimodality of Spinal Locomotor Networks in the Neonatal Mouse.
    Falgairolle M; O'Donovan MJ
    J Neurosci; 2021 Oct; 41(41):8545-8561. PubMed ID: 34446573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling spinal locomotor circuits for movements in developing zebrafish.
    Roussel Y; Gaudreau SF; Kacer ER; Sengupta M; Bui TV
    Elife; 2021 Sep; 10():. PubMed ID: 34473059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits.
    Perry S; Larhammar M; Vieillard J; Nagaraja C; Hilscher MM; Tafreshiha A; Rofo F; Caixeta FV; Kullander K
    J Neurosci; 2019 Mar; 39(10):1771-1782. PubMed ID: 30578339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics.
    Ausborn J; Shevtsova NA; Danner SM
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal V3 Interneurons and Left-Right Coordination in Mammalian Locomotion.
    Danner SM; Zhang H; Shevtsova NA; Borowska-Fielding J; Deska-Gauthier D; Rybak IA; Zhang Y
    Front Cell Neurosci; 2019; 13():516. PubMed ID: 31824266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. V1 interneurons regulate the pattern and frequency of locomotor-like activity in the neonatal mouse spinal cord.
    Falgairolle M; O'Donovan MJ
    PLoS Biol; 2019 Sep; 17(9):e3000447. PubMed ID: 31513565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitatory Spinal Lhx9-Derived Interneurons Modulate Locomotor Frequency in Mice.
    Bertho M; Caldeira V; Hsu LJ; Löw P; Borgius L; Kiehn O
    J Neurosci; 2024 May; 44(18):. PubMed ID: 38438260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of genetically-defined interneurons in generating the mammalian locomotor rhythm.
    Gosgnach S
    Integr Comp Biol; 2011 Dec; 51(6):903-12. PubMed ID: 21576118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.
    Molkov YI; Bacak BJ; Talpalar AE; Rybak IA
    PLoS Comput Biol; 2015 May; 11(5):e1004270. PubMed ID: 25970489
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Haque F; Rancic V; Zhang W; Clugston R; Ballanyi K; Gosgnach S
    J Neurosci; 2018 Jun; 38(25):5666-5676. PubMed ID: 29789381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of brainstem circuits controlling locomotor frequency and gait.
    Ausborn J; Shevtsova NA; Caggiano V; Danner SM; Rybak IA
    Elife; 2019 Jan; 8():. PubMed ID: 30663578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling genetic reorganization in the mouse spinal cord affecting left-right coordination during locomotion.
    Rybak IA; Shevtsova NA; Kiehn O
    J Physiol; 2013 Nov; 591(22):5491-508. PubMed ID: 24081162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.