These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35628561)
1. Establishment of a Landscape of UPL5-Ubiquitinated on Multiple Subcellular Components of Leaf Senescence Cell in Lan W; Zheng S; Yang P; Qiu Y; Xu Y; Miao Y Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628561 [TBL] [Abstract][Full Text] [Related]
2. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Miao Y; Zentgraf U Plant J; 2010 Jul; 63(2):179-188. PubMed ID: 20409006 [TBL] [Abstract][Full Text] [Related]
3. UPL5 modulates WHY2 protein distribution in a Kub-site dependent ubiquitination in response to [Ca Lan W; Ma W; Zheng S; Yang P; Qiu Y; Lin W; Ren Y; Miao Y iScience; 2023 Mar; 26(3):106216. PubMed ID: 36994183 [TBL] [Abstract][Full Text] [Related]
4. Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1. Gilkerson J; Kelley DR; Tam R; Estelle M; Callis J Plant Physiol; 2015 Jun; 168(2):708-20. PubMed ID: 25888615 [TBL] [Abstract][Full Text] [Related]
5. Proteasome-associated HECT-type ubiquitin ligase activity is required for plant immunity. Furniss JJ; Grey H; Wang Z; Nomoto M; Jackson L; Tada Y; Spoel SH PLoS Pathog; 2018 Nov; 14(11):e1007447. PubMed ID: 30458055 [TBL] [Abstract][Full Text] [Related]
6. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Kim DY; Scalf M; Smith LM; Vierstra RD Plant Cell; 2013 May; 25(5):1523-40. PubMed ID: 23667124 [TBL] [Abstract][Full Text] [Related]
7. Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. Lyzenga WJ; Liu H; Schofield A; Muise-Hennessey A; Stone SL J Exp Bot; 2013 Jul; 64(10):2779-91. PubMed ID: 23658427 [TBL] [Abstract][Full Text] [Related]
8. Ubiquitome profiling reveals a regulatory pattern of UPL3 with UBP12 on metabolic-leaf senescence. Lan W; Ma W; Zheng S; Qiu Y; Zhang H; Lu H; Zhang Y; Miao Y Life Sci Alliance; 2022 Aug; 5(12):. PubMed ID: 35926874 [TBL] [Abstract][Full Text] [Related]
9. The Ubiquitin E3 Ligase RHA2b Promotes Degradation of MYB30 in Abscisic Acid Signaling. Zheng Y; Chen Z; Ma L; Liao C Plant Physiol; 2018 Sep; 178(1):428-440. PubMed ID: 30030326 [TBL] [Abstract][Full Text] [Related]
10. Lysine 206 in Arabidopsis phytochrome A is the major site for ubiquitin-dependent protein degradation. Rattanapisit K; Cho MH; Bhoo SH J Biochem; 2016 Feb; 159(2):161-9. PubMed ID: 26314334 [TBL] [Abstract][Full Text] [Related]
11. Ubiquitin-Mediated Proteasomal Degradation of Oleosins is Involved in Oil Body Mobilization During Post-Germinative Seedling Growth in Arabidopsis. Deruyffelaere C; Bouchez I; Morin H; Guillot A; Miquel M; Froissard M; Chardot T; D'Andrea S Plant Cell Physiol; 2015 Jul; 56(7):1374-87. PubMed ID: 25907570 [TBL] [Abstract][Full Text] [Related]
12. Degradation of the stress-responsive enzyme formate dehydrogenase by the RING-type E3 ligase Keep on Going and the ubiquitin 26S proteasome system. McNeilly D; Schofield A; Stone SL Plant Mol Biol; 2018 Feb; 96(3):265-278. PubMed ID: 29270890 [TBL] [Abstract][Full Text] [Related]
14. Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. Igawa T; Fujiwara M; Takahashi H; Sawasaki T; Endo Y; Seki M; Shinozaki K; Fukao Y; Yanagawa Y J Exp Bot; 2009; 60(11):3067-73. PubMed ID: 19429840 [TBL] [Abstract][Full Text] [Related]
15. Proteomics identifies ubiquitin-proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. Iglesias J; Trigueros M; Rojas-Triana M; Fernández M; Albar JP; Bustos R; Paz-Ares J; Rubio V J Proteomics; 2013 Dec; 94():1-22. PubMed ID: 24012629 [TBL] [Abstract][Full Text] [Related]
16. E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. Zhou J; Zhang Y; Qi J; Chi Y; Fan B; Yu JQ; Chen Z PLoS Genet; 2014 Jan; 10(1):e1004116. PubMed ID: 24497840 [TBL] [Abstract][Full Text] [Related]
17. Ubiquitin-Proteasome Dependent Regulation of the GOLDEN2-LIKE 1 Transcription Factor in Response to Plastid Signals. Tokumaru M; Adachi F; Toda M; Ito-Inaba Y; Yazu F; Hirosawa Y; Sakakibara Y; Suiko M; Kakizaki T; Inaba T Plant Physiol; 2017 Jan; 173(1):524-535. PubMed ID: 27821720 [TBL] [Abstract][Full Text] [Related]
18. A converged ubiquitin-proteasome pathway for the degradation of TOC and TOM tail-anchored receptors. Yang M; Chen S; Lim SL; Yang L; Zhong JY; Chan KC; Zhao Z; Wong KB; Wang J; Lim BL J Integr Plant Biol; 2024 May; 66(5):1007-1023. PubMed ID: 38501483 [TBL] [Abstract][Full Text] [Related]
19. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Lee S; Lee DW; Lee Y; Mayer U; Stierhof YD; Lee S; Jürgens G; Hwang I Plant Cell; 2009 Dec; 21(12):3984-4001. PubMed ID: 20028838 [TBL] [Abstract][Full Text] [Related]
20. The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants. Li J; Yuan J; Li Y; Sun H; Ma T; Huai J; Yang W; Zhang W; Lin R Cell Rep; 2022 Apr; 39(2):110664. PubMed ID: 35417702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]