BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 35628569)

  • 1. Vitamin K-Dependent Protein Activation: Normal Gamma-Glutamyl Carboxylation and Disruption in Disease.
    Berkner KL; Runge KW
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The vitamin K-dependent carboxylase.
    Berkner KL
    Annu Rev Nutr; 2005; 25():127-49. PubMed ID: 16011462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GGCX mutants that impair hemostasis reveal the importance of processivity and full carboxylation to VKD protein function.
    Rishavy MA; Hallgren KW; Wilson LA; Hiznay JM; Runge KW; Berkner KL
    Blood; 2022 Oct; 140(15):1710-1722. PubMed ID: 35767717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin K-dependent carboxylation.
    Berkner KL
    Vitam Horm; 2008; 78():131-56. PubMed ID: 18374193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin K-dependent carboxylation of the carboxylase.
    Berkner KL; Pudota BN
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):466-71. PubMed ID: 9435215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vitamin K-dependent carboxylase.
    Berkner KL
    J Nutr; 2000 Aug; 130(8):1877-80. PubMed ID: 10917896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of sequences within the gamma-carboxylase that represent a novel contact site with vitamin K-dependent proteins and that are required for activity.
    Pudota BN; Hommema EL; Hallgren KW; McNally BA; Lee S; Berkner KL
    J Biol Chem; 2001 Dec; 276(50):46878-86. PubMed ID: 11591726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylation of γ-carboxylated Glu (Gla) allows detection by liquid chromatography-mass spectrometry and the identification of Gla residues in the γ-glutamyl carboxylase.
    Hallgren KW; Zhang D; Kinter M; Willard B; Berkner KL
    J Proteome Res; 2013 Jun; 12(6):2365-74. PubMed ID: 22536908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VKOR paralog VKORC1L1 supports vitamin K-dependent protein carboxylation in vivo.
    Lacombe J; Rishavy MA; Berkner KL; Ferron M
    JCI Insight; 2018 Jan; 3(1):. PubMed ID: 29321368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The vitamin K oxidoreductase is a multimer that efficiently reduces vitamin K epoxide to hydroquinone to allow vitamin K-dependent protein carboxylation.
    Rishavy MA; Hallgren KW; Wilson LA; Usubalieva A; Runge KW; Berkner KL
    J Biol Chem; 2013 Nov; 288(44):31556-66. PubMed ID: 23918929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylase overexpression effects full carboxylation but poor release and secretion of factor IX: implications for the release of vitamin K-dependent proteins.
    Hallgren KW; Hommema EL; McNally BA; Berkner KL
    Biochemistry; 2002 Dec; 41(50):15045-55. PubMed ID: 12475254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warfarin alters vitamin K metabolism: a surprising mechanism of VKORC1 uncoupling necessitates an additional reductase.
    Rishavy MA; Hallgren KW; Wilson L; Singh S; Runge KW; Berkner KL
    Blood; 2018 Jun; 131(25):2826-2835. PubMed ID: 29592891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low serum vitamin K in PXE results in defective carboxylation of mineralization inhibitors similar to the GGCX mutations in the PXE-like syndrome.
    Vanakker OM; Martin L; Schurgers LJ; Quaglino D; Costrop L; Vermeer C; Pasquali-Ronchetti I; Coucke PJ; De Paepe A
    Lab Invest; 2010 Jun; 90(6):895-905. PubMed ID: 20368697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. γ-Glutamyl carboxylase mutations differentially affect the biological function of vitamin K-dependent proteins.
    Hao Z; Jin DY; Chen X; Schurgers LJ; Stafford DW; Tie JK
    Blood; 2021 Jan; 137(4):533-543. PubMed ID: 33507293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vitamin K cycle.
    Stafford DW
    J Thromb Haemost; 2005 Aug; 3(8):1873-8. PubMed ID: 16102054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.
    Caspers M; Czogalla KJ; Liphardt K; Müller J; Westhofen P; Watzka M; Oldenburg J
    Thromb Res; 2015 May; 135(5):977-83. PubMed ID: 25747820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vitamin K-dependent carboxylase has been acquired by Leptospira pathogens and shows altered activity that suggests a role other than protein carboxylation.
    Rishavy MA; Hallgren KW; Yakubenko AV; Zuerner RL; Runge KW; Berkner KL
    J Biol Chem; 2005 Oct; 280(41):34870-7. PubMed ID: 16061481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Pseudoxanthoma elasticum-like disease with deficiency of vitamin K-dependent clotting factors and cutis laxa features].
    Gusdorf L; Mitcov M; Maradeix S; Cunat S; Martin L; Cribier B
    Ann Dermatol Venereol; 2016 Apr; 143(4):279-83. PubMed ID: 26944767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exon 2 skipping eliminates γ-glutamyl carboxylase activity, indicating a partial splicing defect in a patient with vitamin K clotting factor deficiency.
    Rishavy MA; Hallgren KW; Zhang H; Runge KW; Berkner KL
    J Thromb Haemost; 2019 Jul; 17(7):1053-1063. PubMed ID: 31009158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.